G. Wagner, T. Garland / Tetrahedron Letters 49 (2008) 3596–3599
3599
value of 12 Hz observed in purine derivatives.19 However,
our DFT calculations suggest that the H–C–N–C moiety
in 4 is not fully planar, and the Karplus dependence of
3JCH on the dihedral angle predicts that any deviation from
planarity should lower the coupling constant. In light of
this a value of 6.3 Hz is acceptable for trans- but not a
cis-coupling, thereby supporting the Z-configuration of 4.
In conclusion, a new method is reported for the synthe-
sis of N-acyl-formamidines from easily accessible starting
materials such as nitrones and nitriles, by means of a 1,3-
dipolar cycloaddition followed by a new type of rearrange-
ment consisting of ring opening and a concomitant 1,2-aryl
shift from the oxadiazoline carbon to the adjacent amino
nitrogen.
Danks, T. N.; Wagner, G. Dalton Trans. 2004, 166; (c) Coley, H. M.;
Sarju, J.; Wagner, G. J. Med. Chem. 2008, 51, 135.
7. Wagner, G. Inorg. Chim. Acta 2004, 357, 1320.
8. Desai, B.; Danks, T. N.; Wagner, G. J. Chem. Soc., Dalton Trans.
2003, 2544.
9. Wagner, G.; Haukka, M. J. Chem. Soc., Dalton Trans. 2001, 2690.
10. Sang, H.; Janzen, E. G.; Poyer, J. L. J. Chem. Soc., Perkin Trans. 2
1996, 1183.
11. Plate, R.; Hermkens, P. H. H.; Smits, J. M. M.; Nivard, R. J. F.;
Ottenheijm, H. C. J. J. Org. Chem. 1987, 52, 1047.
12. Charmier, M. A. J.; Haukka, M.; Pombeiro, A. J. L. Dalton Trans.
2004, 2741.
13. Tyrrell, E.; Allen, J.; Jones, K.; Beauchet, R. Synthesis 2005, 2393.
14. Bjorgo, J.; Boyd, D. R.; Neill, D. C.; Jennings, W. B. J. Chem. Soc.,
Perkin Trans. 1 1977, 254.
15. General procedure for the synthesis of 3-(2,4,6-trimethoxyphenyl)-2-
methyl-5-trichloromethyl-D4-1,2,4-oxadiazoline (3j): A 10-fold excess of
trichloroacetonitrile (100 ll, 144.4 mg, 1 mmol) was added to a
solution of nitrone 2j (0.1 mmol) in CDCl3 (0.5 ml). The reaction
mixture was stirred at 60 °C and the progress of the reaction was
monitored by 1H NMR at regular time intervals. The cycloaddition
was completed within 1 h. The crude product was used for the
subsequent reactions without further purification. GC-TOF MS:
225 [MꢀCCl3CN (nitrone)]+ (11%), 209 [nitroneꢀO]+ (6%), 208
[nitroneꢀOH]+ (8%), 194 [nitroneꢀOMe]+ (38%), 179 [nit-
Acknowledgements
The authors are grateful to the EPSRC for the provision
of a studentship and the Proof of Concept Fund of the
University of Surrey for supporting this work.
roneꢀNMeOH]+ (100%). IR (neat film, selected bands), cmꢀ1
:
Supplementary data
3004, 2962 and 2941 m m(C–H), 2842 m m(C–H of OMe), 1670 s m
(C@N), 1610 m m (C@C). 1H NMR (500 MHz, CDCl3), d (ppm):
2.95 (s, br s, 3H, NMe) 3.78 (s, 3H, OMe), 3.79 (s, 6H, 2 ꢁ OMe), 6.10
(s, 2H, aryl-H), 6.36 (s, br s, 1H, N–CH–N). 13C NMR (125.8 MHz,
CDCl3), d (ppm): 48.4 (CH3, NMe), 55.5 (CH3, OMe), 56.0 (CH3,
2 ꢁ OMe), 85.8 (Cq, CCl3), 87.6 (CH, N–CH–N), 91.1 (aryl CH),
106.5, 159.1 and 162.3 (aryl Cq), 160.1 (Cq, C@N).
Synthetic procedures and spectroscopic data of nitrones
2, oxadiazolines 3 and formamidines 4 are available. Sup-
plementary data associated with this article can be found,
16. (a) Wagner, G. Chem. Eur. J. 2003, 9, 1503; (b) Wagner, G.; Danks,
T. N.; Desai, B. Tetrahedron 2008, 64, 477.
References and notes
17. General procedure for the synthesis of N-(2,4,6-trimethoxyphenyl)-N-
methyl-N 0 -(trichloroacetyl)-formamidine (4j): The crude D4-1,2,4-
oxadiazoline 3j (0.1 mmol) in CDCl3 (0.5 ml) or, alternatively, a
solution of nitrone 2j (0.1 mmol) and trichloroacetonitrile (10 ll,
14.44 mg, 0.1 mmol) in CDCl3 (0.5 ml) was heated to 60 °C and the
reaction was periodically monitored by 1H NMR spectroscopy. The
cycloaddition to the D4-1,2,4-oxadiazoline and the subsequent rear-
rangement into the formamidine derivative was complete after 12 h.
The product was purified by chromatography (SiO2/CH2Cl2) and
obtained as a colourless solid. Yield 82%. Elemental Anal. Calcd for
C13H15Cl3N2O4: C, 42.24; H, 4.09;N, 7.58. Found: C, 42.38; H, 3.87;
N, 7.58. GC-TOF MS: 368, 370, 372 [M]+ (1%, 1%, 0.3%), 337, 339,
341 [MꢀOMe] + (3%, 3%, 0.8%), 251 [MꢀCCl3]+ (100%), 236
[MꢀCCl3–Me] + (4%), 194 [MꢀCCl3–MeNCO] + (31%). Mp 124–
126 °C.
1. (a) Grigat, E.; Putter, R.; Muhlbauer, E. Chem. Ber. 1965, 98, 3777;
¨
¨
(b) Hedayatullah, M.; Iida, H.; Denivelle, L. C. R. Hebd. Seances
Acad. Sci. Ser. C 1970, 271, 146.
´
´
2. (a) Rodrıguez, H.; Pavez, H.; Marquez, A.; Navarrete, P.
´
Tetrahedron 1983, 39, 23–27; (b) Pavez, H.; Marquez, A.; Navarrete,
´
P.; Tzichinovsky, S.; Rodrıguez
, H. Tetrahedron 1987, 43,
2223.
3. Burger, K.; Einhellig, K.; Roth, W.-D.; Daltrozzo, E. Chem. Ber.
1977, 110, 605.
4. (a) Samuilov, Ya. D.; Solov’eva, S. E.; Konovalov, A. I. Zh. Obshch.
Khim. 1980, 50, 138; see also Russ. J. Gen. Chem. 1980, 50, 117; (b)
Hermkens, P. H. H.; van Maarseveen, J. H.; Kruse, C. G.; Scheeren,
H. W. Tetrahedron 1988, 44, 6491; (c) Eberson, L.; McCullough, J. J.;
Hartshorn, C. M.; Hartshorn, M. P. J. Chem. Soc., Perkin Trans. 2
1998, 41.
5. Wagner, G.; Pombeiro, A. J. P.; Kukushkin, V. Yu. J. Am. Chem.
Soc. 2000, 122, 3106.
6. (a) Wagner, G.; Haukka, M.; Frau´sto da Silva, J. J. R.; Pombeiro, A.
J. P.; Kukushkin, V. Yu. Inorg. Chem. 2001, 40, 264; (b) Desai, B.;
18. Keah, H. H.; Rae, I. D. Aust. J. Chem. 1993, 46, 1413.
´ˇ
´
ˇ ´
´
19. (a) Secˇkarova, P.; Marek, R.; Malinakova, K.; Kolehmainen, E.;
´
´ˇ
Hockova, D.; Hocek, M.; Sklenar, V. Tetrahedron Lett. 2004, 45,
´
ˇˇ´
´
´
6259; (b) Hockova, D.; Budesınsky, M.; Marek, R.; Marek, J.; Holy,
A. Eur. J. Org. Chem. 1999, 10, 2675.