Communications
saturated aqueous solution of NaHCO3 (5 mL) was added to quench
G. Hynd, M. Porcelloni, Angew. Chem. 2001, 113, 1482 – 1485;
Angew. Chem. Int. Ed. 2001, 40, 1433 – 1436.
[5] For the catalytic hydrogenation of azirines to afford N-unsub-
stituted aziridines, see: P. Roth, P. G. Andersson, P. Somfai,
Chem. Commun. 2002, 1752 – 1753.
[6] For representative examples, see: a) O. Pàmies, J.-E. Bäckvall, J.
Org. Chem. 2001, 66, 4022 – 4025; b) Y. Tsuchiya, T. Kumamoto,
T. Ishikawa, J. Org. Chem. 2004, 69, 8504 – 8505; c) S. K. Kim,
E. N. Jacobsen, Angew. Chem. 2004, 116, 4042 – 4044; Angew.
Chem. Int. Ed. 2004, 43, 3952 – 3954; d) G. Bartoli, M. Bosco, A.
Carlone, M. Locatelli, P. Melchiorre, L. Sambri, Org. Lett. 2004,
6, 3973 – 3975.
[7] a) A. Kawamoto, M. Wills, Tetrahedron: Asymmetry 2000, 11,
3257 – 3261; b) A. Kawamoto, M. Wills, J. Chem. Soc. Perkin
Trans. 1 2001, 1916 – 1928.
[8] a) A. Volonterio, P. Bravo, W. Panzeri, C. Pesenti, M. Zanda,
Eur. J. Org. Chem. 2002, 3336 – 3340; b) B. Denolf, S. Mange-
linckx, K. W. Törnoos, N. De Kimpe, Org. Lett. 2006, 8, 3129 –
3132.
[9] For the preparation of racemic terminal aziridines 4 by the
reduction of di-and trichloroketimines with complex metal
hydrides, see: a) N. De Kimpe, R. VerhØ, L. De Buyck, N.
Schamp, J. Org. Chem. 1980, 45, 5319 – 5325; b) N. De Kimpe, R.
VerhØ, L. De Buyck, N. Schamp, J. Org. Chem. 1981, 46, 2079 –
2081.
the reaction. The mixture was extracted with EtOAc (2 20 mL) and
the combined organic extracts were dried over MgSO4. Concentration
in vacuo, followed by flash chromatography on silica gel with a
mixture of petroleum ether and ethyl acetate (95:5) afforded amines
3.
General procedure for the asymmetric reductive amination of
ketones 1 (method B): Molecular sieves (5 , 200 mg) were added to
a
solution of a-chloroketone 1 (0.6 mmol, 3.0 equiv) and the
corresponding aniline derivative (0.2 mmol) in dry toluene (2 mL)
and the reaction mixture was stirred at room temperature under
argon for 24 h. The reaction mixture was cooled to 08C and catalyst 7
(250 mL, 0.04m solution in dry toluene, 5 mol%) was added, followed
by trichlorosilane (40 mL, 0.4 mmol, 2.0 equiv). The reaction mixture
was stirred at room temperature for 24 h, after which time a saturated
aqueous solution of NaHCO3 (5 mL) was added to quench the
reaction. The mixture was extracted with EtOAc (2 20 mL) and the
combined organic extracts were dried over MgSO4. Concentration
in vacuo, followed by flash chromatography on silica gel with a
mixture of petroleum ether and diethyl ether (97:3 to 90:10) furnished
the amines 3.
General procedure for the synthesis of aziridines 4: tBuOK
(33.5 mg, 0.30 mmol, 2.0 equiv) was added to a stirred solution of a-
chloroamine 3 (0.15 mmol, 1.0 equiv) in dry THF (1.5 mL) and the
resulting suspension was heated at 708C under argon for 0.5 h. The
reaction mixture was cooled to room temperature and filtered
through a pad of celite, the pad was washed with diethyl ether, and the
filtrate was evaporated to dryness. The residue was purified by
column chromatography on silica gel (7 g), pretreated overnight with
triethylamine (1.5 mL) in petroleum ether (50 mL), using a mixture of
petroleum ether and diethyl ether (90:10) as eluent to afford the
corresponding aziridines 4.
[10] P. K. Kadaba, D. L. Dahlman, US Patent 4,582,827, 1983.
ˇ
´
[11] a) A. V. Malkov, A. Mariani, K. N. MacDougall, P. Kocovsky,
ˇ
Org. Lett. 2004, 6, 2253 – 2256; b) A. V. Malkov, S. Stoncius, K. N.
ˇ
´
MacDougall, A. Mariani, G. D. McGeoch, P. Kocovsky, Tetrahe-
ˇ
dron 2006, 62, 264 – 284; c) A. V. Malkov, M. Figlus, S. Stoncius,
ˇ
´
P. Kocovsky, J. Org. Chem. 2007, 72, 1315 – 1325.
[12] For chiral pyridyloxazolines as catalysts in the reduction of both
imines and ketones, see: A. V. Malkov, A. J. P. Stewart-Liddon,
ˇ
´
P. Ramírez-López, L. Bendovµ, D. Haigh, P. Kocovsky, Angew.
Chem. 2006, 118, 1460 – 1463; Angew. Chem. Int. Ed. 2006, 45,
1432 – 1435.
Received: January 13, 2007
Published online: April 5, 2007
[13] For the asymmetric reduction of imines with trichlorosilane, also
see: a) F. Iwasaki, O. Omonura, K. Mishima, T. Kanematsu, T.
Maki, Y. Matsumura, Tetrahedron Lett. 2001, 42, 2525 – 2527;
b) O. Onomura, Y. Kouchi, F. Iwasaki, Y. Matsumura, Tetrahe-
dron Lett. 2006, 47, 3751 – 3754; c) Z. Wang, X. Ye, S. Wei, P. Wu,
A. Zhang, J. Sun, Org. Lett. 2006, 8, 999 – 1001; d) Z. Wang, M.
Cheng, P. Wu, S. Wei, J. Sun, Org. Lett. 2006, 8, 3045 – 3048.
[14] J. M. M. Verkade, L. J. C. van Hemert, P. J. L. M. Quaedflieg,
P. L. Alsters, F. L. van Delft, F. P. J. T. Rutjes, Tetrahedron Lett.
2006, 47, 8109 – 8113.
[15] For the reductive amination of ketones using Hantzsch esters,
see: a) S. Hoffmann, A. M. Seayad, B. List, Angew. Chem. 2005,
117, 7590 – 7593; Angew. Chem. Int. Ed. 2005, 44, 7424 – 7427;
b) R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am.
Chem. Soc. 2006, 128, 84 – 86.
[16] Under the conditions used, the competing elimination reaction
was largely suppressed. Conversely, the use of the known
protocol (see: T. Satoh, T. Sato, T. Oohara, K. Yamakawa, J. Org.
Chem. 1989, 54, 3973 – 3978) for an analogous ring closure that
employed a mixture of THF with tBuOH as the solvent resulted
in substantial elimination.
[17] On several occasions (Table 1, entries 3, 7, 10–12, 16, and 17), we
could not determine the enantiopurity of aziridines by using
HPLC on a chiral stationary phase. However, in all other cases,
we were able to show that the enantiopurity of 4 reflected that of
3 (Table 1, entries 1, 2, 4, 6, 8, 9, and 13); therefore, the same
behavior can be expected for the rest of the series. Conversely,
we could not establish the enantiopurity of the amines 3m and
3n, though this can be inferred from the enantiopurity of
aziridines 4m and 4n, obtained by their cyclization (Table 1,
entries 14 and 15).
Keywords: amination · asymmetric synthesis · aziridines ·
organocatalysis · reduction
.
[1] For overviews, see: a) D. Tanner, Angew. Chem. 1994, 106, 625 –
646; Angew. Chem. Int. Ed. Engl. 1994, 33, 599 – 619; b) R. S.
Atkinson, Tetrahedron 1999, 55, 1519 – 1559; c) W. McCoull,
F. A. Davis, Synthesis 2000, 1347 – 1365; d) J. B. Sweeney, Chem.
Soc. Rev. 2002, 31, 247 – 258; e) X. E. Hu, Tetrahedron 2004, 60,
2701 – 2743; f) D. Morton, R. A. Stockman, Tetrahedron 2006,
62, 8869 – 8905; g) X. L. Hou, J. Wu, R. H. Fan, C. H. Ding, Z. B.
Luo, L. X. Dai, Synlett 2006, 181 – 193; h) I. D. G. Watson, L. Yu,
A. K. Yudin, Acc. Chem. Res. 2006, 39, 194 – 206.
[2] For the transition-metal-catalyzed addition of nitrenes to olefins,
see: a) P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905 – 2919; for
some recent examples, see: b) M. Nishimura, S. Minakata, T.
Takahashi, Y. Oderaotoshi, M. Komatsu, J. Org. Chem. 2002, 67,
2101 – 2110; c) H. Kawabata, K. Omura, T. Katsuki, Tetrahedron
Lett. 2006, 47, 1571 – 1574.
[3] For the base-catalyzed addition of hydroxamic acids to acrylates,
see: a) J. Aires-de-Sousa, A. M. Lobo, S. Prabhakar, Tetrahedron
Lett. 1996, 37, 3183 – 3186; b) J. Aires-de-Sousa, S. Prabhakar,
A. M. Lobo, A. M. Rosa, M. J. S. Gomes, M. C. Corvo, D. J.
Williams, A. J. P. White, Tetrahedron: Asymmetry 2002, 12,
3349 – 3365; c) E. Murugan, A. Siva, Synthesis 2005, 2022 – 2028.
[4] For additions of carbenes or ylides to imines, see: a) V. K.
Aggarwal, M. P. Coogan, R. A. Stenson, R. V. H. Jones, R.
Fieldhouse, J. Blacker, Eur. J. Org. Chem. 2002, 319 – 326; for the
synthesis of 2,3-disubstituted aziridines, see: b) K. Hada, T.
Watanabe, T. Isobe, T. Ishikawa, J. Am. Chem. Soc. 2001, 123,
7705 – 7706; c) V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara,
3724
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3722 –3724