Synthesis of Functionalized Pyrrolidinetriones and Piperidinetriones
Li, L. Wen, W. Fu, G. Zhao, F. Hu, H. Yang, Chin. J. Chem.
2004, 22, 1064–1066; c) S. Peruncheralathan, T. A. Khan, H.
Ila, H. Junjappa, J. Org. Chem. 2005, 70, 10030–10035; d) S.
Kumar, H. Ila, H. Junjappa, Tetrahedron 2007, 63, 10067–
10076; e) N. C. Misra, K. Panda, H. Ila, H. Junjappa, J. Org.
Chem. 2007, 72, 1246–1251; f) H. S. P. Rao, K. Vasantham, J.
Org. Chem. 2009, 74, 6847–6850; g) M. M. Savant, A. M. Pan-
suriya, C. V. Bhuva, N. Kapuriya, A. S. Patel, V. B. Audichya,
P. V. Pipaliya, Y. T. Naliapara, J. Comb. Chem. 2010, 12, 176–
180; h) R. K. Verma, H. Ila, M. S. Singh, Tetrahedron 2010,
66, 7389–7398; i) L. Zhang, X. Xu, W. Xia, Q. Liu, Adv. Synth.
Catal. 2011, 353, 2619–2623.
a) G. Sommen, A. Comel, G. Kirsch, Synlett 2003, 855–857;
b) D. Thomae, E. Perspicace, D. Henryon, Z. Xu, S. Schneider,
S. Hesse, G. Kirsch, P. Seck, Tetrahedron 2009, 65, 10453–
10458; c) Y. Wang, D. Dong, Y. Yang, J. Huang, Y. Ouyang,
Q. Liu, Tetrahedron 2007, 63, 2724–2728.
a) C. Piao, Y. Zhao, X. Han, Q. Liu, J. Org. Chem. 2008, 73,
2264–2269; b) V. Wolf, M. Adeel, S. Reim, A. Villinger, C. Fi-
scher, P. Langer, Eur. J. Org. Chem. 2009, 5854–5867; c) A.
Goel, V. Kumar, S. Chaurasia, M. Rawat, R. Prasad, R. S. An-
and, J. Org. Chem. 2010, 75, 3656–3662; d) A. Goel, V. Kumar,
P. Nag, V. Bajpai, B. Kumar, C. Singh, S. Prakash, R. S. An-
and, J. Org. Chem. 2011, 76, 7474–7481.
a) M. Wang, Y. Liu, Z. Huang, Tetrahedron Lett. 2001, 42,
2553–2555; b) O. Barun, S. Nandi, K. Panda, H. Ila, H. Jun-
jappa, J. Org. Chem. 2002, 67, 5398–5401; c) R. K. Verma,
G. K. Verma, G. Shukla, M. S. Singh, RSC Adv. 2012, 2, 2413–
2421.
4-(Ethylthio)-2-methyl-6-phenyl-6H-pyrrolo[3,4-d]pyrimidine-5,7-di-
one (4a): 147 mg, 98%, Rf = 0.3 (petroleum ether/ethyl acetate, 2:1),
white crystalline solid, m.p. 161–162 °C. 1H NMR (500 MHz,
CDCl3): δ = 1.45 (t, J = 7.0 Hz, 3 H), 2.89 (s, 3 H), 3.38 (q, J =
7.0 Hz, 2 H), 7.40–7.43 (m, 3 H), 7.49–7.52 (m, 2 H) ppm. 13C
NMR (125 MHz, CDCl3): δ = 14.0, 23.6, 26.8, 116.8, 126.4 (2 C),
128.5, 129.2 (2 C), 130.8, 158.2, 164.5, 164.8, 168.9, 173.6 ppm.
HRMS (ESI-TOF): calcd. for C15H14N3O2S [M + H+] 300.0801;
found 300.0810.
General Procedure for the Preparation of 5 and 6: The procedure
for the synthesis of 5 and 6 is the same as for 4.
[4]
[5]
4-(Ethylthio)-8,8-dimethyl-2,6-diphenylpyrido[4,3-d]pyrimidine-5,7-
(6H,8H)-dione (5a): 163 mg, 81%, Rf = 0.3 (petroleum ether/ethyl
acetate, 3:2), white crystalline solid, m.p. 207–208 °C. 1H NMR
(500 MHz, CDCl3): δ = 1.47 (t, J = 7.0 Hz, 3 H), 1.84 (s, 6 H),
3.36 (q, J = 7.0 Hz, 2 H), 7.21 (d, J = 7.0 Hz, 2 H), 7.44 (t, J =
7.0 Hz, 1 H), 7.49–7.59 (m, 5 H), 8.59–8.61 (m, 2 H) ppm. 13C
NMR (125 MHz, CDCl3): δ = 13.5, 24.9, 27.3 (2 C), 46.9, 112.1,
128.5 (2 C), 128.69 (2 C), 128.7, 129.2 (2 C), 129.3 (2 C), 132.1,
134.6, 136.6, 163.1, 163.9, 171.1, 174.6, 175.6 ppm. HRMS (ESI-
TOF): calcd. for C23H22N3O2S [M + H+] 404.1427; found
404.1435.
[6]
[7]
4-(Ethylthio)-6-isopropyl-2-methyl-N-phenylpyrimidine-5-carbox-
amide (6a): 153 mg, 97%, Rf = 0.4 (petroleum ether/ethyl acetate,
4:1), white solid, m.p. 130–131 °C. 1H NMR (500 MHz, CDCl3): δ
= 1.27 (d, J = 6.5 Hz, 6 H), 1.35 (t, J = 7.0 Hz, 3 H), 2.65 (s, 3 H),
3.12–3.17 (m, 1 H), 3.22 (q, J = 7.0 Hz, 2 H), 7.19 (t, J = 7.0,
8.0 Hz, 1 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.51 (s, 1 H), 7.61 (d, J =
7.0 Hz, 2 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.26, 21.82
(2 C), 24.09, 26.23, 32.89, 120.11 (2 C), 124.10, 125.09, 129.14 (2
C), 137.29, 164.43, 166.13, 167.34, 170.02 ppm. HRMS (ESI-TOF):
calcd. for C17H22N3OS [M + H+] 316.1478; found 316.1470.
a) X. Bi, D. Dong, Q. Liu, W. Pan, L. Zhao, B. Li, J. Am.
Chem. Soc. 2005, 127, 4578–4579; b) J. Liu, X. Xu, D. Li, L.
Zhang, K. Zhang, Q. Liu, Tetrahedron Lett. 2010, 51, 6918–
6920; c) J. Liu, X. Fu, Y. Zhou, G. Zhou, Y. Liang, D. Dong,
Aust. J. Chem. 2010, 63, 1267–1271.
X. Xu, L. Zhang, X. Liu, L. Pan, Q. Liu, Angew. Chem. Int.
Ed. 2013, 52, 9271–9274.
[8]
[9]
Y. Zhao, L. Chen, S. Yang, C. Tian, Q. Liu, J. Org. Chem.
2009, 74, 5622–5625.
Supporting Information (see footnote on the first page of this arti-
cle): Characterization data for 2b–2j, 3b–3j, 4b–4d, 5b and 6b, crys-
tallographic data for 2f and copies of 1H NMR and 13C NMR
spectra of compounds 2, 3, 4, 5 and 6.
[10] a) F. Wong, Y. Huang, C. Chang, J. Org. Chem. 2012, 77, 8492–
8500; b) A. Kumar, I. Ahmad, B. S. Chhikara, R. Tiwari, D.
Mandal, K. Parang, Bioorg. Med. Chem. Lett. 2011, 21, 1342–
1346; c) M. Bakavoli, G. Bagherzadeh, M. Vaseghifar, A. Shiri,
M. Mehdi Pordel, M. Mashreghi, P. Pordeli, M. Araghi, Eur.
J. Med. Chem. 2009, 45, 647–650.
Acknowledgments
[11] Crystallographic data for 2f is available as Supporting Infor-
mation or as CCDC-947174. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.
The authors acknowledge the National Nature Science Foundation
of China (NSFC) (grant number NNSFC21172031/21202017),
New Century Excellent Talents in Chinese University (grant
number NCET-11-0613) and the Research Fund for the Doctoral
Program of Higher Education of China (20120043110004) for
funding support of this research.
[12] For pharmacological activities of pyrrolidinetriones, see: a) F.
Salmon-Legagner, Y. Oliver, C. Bobin, Compt. Rend. 1964, 258,
6456–6457; b) K. Gerzon, U. S. 3.285–933, 1966; c) E. G. How-
ard Jr., U. S. 2,832,790, 1958. For selected examples on synthe-
sis of pyrrolidinetriones, see: d) P. Vargas, F. Rosa, L. Buriol,
M. Rotta, D. Moreira, C. Frizzo, H. Bonacorso, N. Zanatta,
M. Martins, Tetrahedron Lett. 2012, 53, 3131–3134; e) K. Os-
trowska, K. Szymoniak, M. Szczurek, K. Jamrozy, M. Rapala-
Kozik, Tetrahedron 2011, 67, 5219–5227; f) W. Zankowska-Jas-
inska, J. Eilmes, B. Zaleska, Rocz. Chem. 1977, 51, 1617–1619.
[13] For piperidinetriones, see: a) J. D. Mee, J. Org. Chem. 1975,
40, 2135–2136; b) B. Bobranski, M. T. Konieczny, II Farmaco,
Edizione Scientifica 1975, 30, 519–526; c) K. E. Schulte, R.
Mang, Arch. Pharm. 1963, 296, 501–509.
[1] For reviews, see: a) R. K. Dieter, Tetrahedron 1986, 42, 3029–
3348; b) H. Junjappa, H. Ila, C. V. Asokan, Tetrahedron 1990,
46, 5423–5832; c) M. Kolb, Synthesis 1990, 171–190; d) L. Pan,
Q. Liu, Synlett 2011, 1073–1080; e) L. Pan, X. Bi, Q. Liu,
Chem. Soc. Rev. 2013, 42, 1251–1286.
[2] For selected examples, see: a) J. Tan, X. Xu, L. Zhang, Y. Li,
Q. Liu, Angew. Chem. 2009, 121, 2912–2916; Angew. Chem. Int.
Ed. 2009, 48, 2868–2872; b) Y. Dong, M. Wang, J. Liu, W. Ma,
Q. Liu, Chem. Commun. 2011, 47, 7380–7382; c) Y. Li, X. Xu,
J. Tan, C. Xia, D. Zhang, Q. Liu, J. Am. Chem. Soc. 2011, 133,
1775–1777; d) B. Liu, G. Zheng, X. Liu, C. Xu, J. Liu, M.
Wang, Chem. Commun. 2013, 49, 2201–2203.
[14] a) K. T. Potts, M. J. Cipullo, P. Ralli, G. Theodoridis, J. Org.
Chem. 1983, 48, 4841–4843; b) H. D. Stachel, Chem. Ber. 1962,
95, 2166–2171.
[3] a) M. Zaharan, A. M. S. El-Sharief, M. S. A. El-Gaby, Y. A.
Ammar, U. H. El-Said, Il Farmaco 2001, 56, 277–283; b) M.
Received: August 15, 2013
Published Online: November 28, 2013
Eur. J. Org. Chem. 2014, 797–801
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
801