upconversion lasing,9,10 two-photon fluorescence excita-
tion microscopy,11-15 three-dimensional optical data
storage,16-18 and photodynamic therapy.19
Tw o-P h oton Sen sor for Meta l Ion s Der ived
fr om Aza cr ow n Eth er
An important addition to such applications would be
the development of two-photon sensors for biological
applications. Currently, much research is being con-
ducted to develop one-photon fluorescence (OPF) probes
because they are useful tools for clarifying the functions
in biological systems.20 One of the major drawbacks of
such sensors is that the excitation wavelengths are in
the range of 350-560 nm, which may cause damage to
the substrates.21 The problem could be avoided if one
develops two-photon sensors, which allow visualization
of ions, small molecules, or enzyme activity in living cells
by employing two-photon-induced fluorescence (TPF)
microscopy that uses NIR photons as the excitation
source.11-15 More importantly, the two-photon process
would make it possible to determine the three-dimen-
sional distribution of the guest molecules in the living
cells in high resolution. Recently, there has been much
progress in the two-photon imaging of biological sub-
strates by using two-photon confocal laser scanning
microscopy (2PCLSM).22
A useful TPF sensor must possess a fluorophore with
large TPA cross section (δ) and a receptor for the guest
molecules or ions. The wavelength of the maximum two-
photon absorption (λ(m2a) x) for such fluorophore should be
close to 800 nm, because most of the TPF microscopy
experiments use an 800 nm laser beam. Recently, a
variety of bis(styryl)benzene derivatives has been shown
to exhibit large a two-photon cross section near 800 nm.2
As the first step toward developing a two-photon sensor
Hwan Myung Kim, Mi-Yun J eong, Hyun Cheol Ahn,
Seung-J oon J eon, and Bong Rae Cho*
Molecular Opto-Electronics Laboratory,
Department of Chemistry and Center for Electro- and
Photo-Responsive Molecules, Korea University,
1-Anamdong, Seoul, 136-701, Korea
chobr@korea.ac.kr
Received May 25, 2004
Abstr a ct: A two-photon sensor for the metal ions derived
from azacrown ether as the receptor is reported. The sensor
emits strong two-photon fluorescence when excited by 800
nm laser photons. Moreover, the binding constants measured
by the one- and two-photon fluorescence are similar. This
result may be useful for the design of efficient two-photon
fluorescence probes for biological substrates.
Organic materials exhibiting large two-photon absorp-
tion (TPA) behavior have drawn much interest because
they can be excited upon irradiation of low energy
photons with sufficiently high intensity.1-5 Many ap-
plications of such materials have become reality, some
of which include optical power limiting,6-8 two-photon
* To whom correspondence should be addressed. Phone: 82-2-3290-
3129. Fax: 82-2-3290-3121.
(1) (a) Reinhardt, B. A.; Brott, L. L.; Clarson, S. J .; Dillard, A. G.;
Bhatt, J . C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N. Chem.
Mater. 1998, 10, 1863. (b) Belfield, K. D.; Schafer, K. J .; Mourad, W.;
Reinhardt, B. A. Org. Chem. 2000, 65, 4475. (c) Abbotto, A.; Beverina,
L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani, G. A.; Pedron, D.;
Signorini, R. Org. Lett. 2002, 4, 1495.
(8) Ehrlich, J . E.; Wu, X. L.; Lee, L.-Y.; Hu, Z.-Y.; Roeckel, H.;
Marder, S. R.; Perry, J . Opt. Lett. 1997, 22, 1843.
(2) (a) Rumi, M.; Ehrlich, J . E.; Heikal, A. A.; Perry, J . W.; Barlow,
S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Ro¨ckel, H.;
Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bre´das, J .-L. J . Am.
Chem. Soc. 2000, 122, 9500. (b) Pond, S. J . K.; Rumi, M.; Levin, M.
D.; Parker, T. C.; Beljonne, D.; Day, M. W.; Bre´das, J .-L.; Marder, S.
R.; Perry, J . W. J . Phys. Chem. A 2002, 106, 11470. (c) Strehmel, B.;
Sarker, A. M.; Detert, H. ChemPhysChem. 2003, 4, 249.
(3) (a) Chung, S.-J .; Kim, K.-S.; Lin, T.-C.; He, G. S.; Swiatkiewicz,
J .; Prasad, P. N. J . Phys. Chem. B 1999, 103, 10741. (b) Macak, P.;
Luo, Y.; Norman, H.; A° gren. H. J . Chem. Phys. 2000, 113, 7055. (c)
Kim, O.-K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He, G. S.; Swiatkiewicz,
J .; Prasad, P. N. Chem. Mater. 2000, 12, 284. (d) Adronov, A.; Fre´chet,
J . M.; He, G. S.; Kim, K.-S.; Chung, S.-J .; Swiatkiewicz, J .; Prasad, P.
N. Chem. Mater. 2000, 12, 2838.
(4) (a) Ventelon, L.; Moreaux, L.; Mertz, J .; Blachard-Desce, M.
Chem. Commun. 1999, 2055. (b) Ventelon, L.; Charier, S.; Moreaux,
L.; Mertz, J .; Blachard-Desce, M. Angew. Chem., Int. Ed. 2001, 40,
2098. (c) Mongin, O.; Porres, L.; Moreaux, L.; Mertz, J .; Blanchard-
Desce, M. Org. Lett. 2002, 4, 719. (d) Mongin, O.; Brunel, J .; Porre`s,
L.; Blachard-Desce, M. Tetrahedron Lett. 2003, 44, 8121. (e) Mongin,
O.; Porre`s, L.; Katan, C.; Pons, T.; Mertz, J .; Blachard-Desce, B.
Tetrahedron. Lett. 2003, 44, 8121. (f) Porres, L.; Mongin, O.; Katan,
C.; Charlot, M.; Pons, T.; Mertz, J .; Blanchard-Desce, M. Org. Lett,
2004, 6, 47.
(5) (a) Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y.-S.; Lee, Y.-K.;
J eon, S.-J .; Choi, J .-H.; Lee, H.; Cho, M. J . Am. Chem. Soc. 2001, 123,
10039. (b) Lee, W.-H.; Lee, H.; Kim, J .-A.; Choi, J .-H.; Cho, M.; J eon,
S.-J .; Cho, B. R. J . Am. Chem. Soc. 2001, 123, 10658. (c) Yoo, J .; Yang,
S. K.; J eong, M.-Y.; Ahn, H. C.; J eon, S.-J .; Cho, B. R. Org. Lett. 2003,
5, 645. (d) Yang, W. J .; Kim, D. Y.; J eong, M.-Y.; Kim, H. M.; J eon,
S.-J .; Cho, B. R. Chem. Commun. 2003, 2618.
(9) Bhawalkar, J . D.; He, G. S.; Prasad, P. N. Rep. Prog. Phys. 1996,
59, 1041.
(10) (a) He, G. S.; Zhao, C. F.; Bhawalkar, J . D.; Prasad, P. N. Appl.
Phys. Lett. 1995, 67, 3703. (b) Zhao, C. F.; He, G. S.; Bhawalkar, J . D.;
Park, C. K.; Prasad, P. N. Chem. Mater. 1995, 7, 1979.
(11) (a) Denk, W.; Strickler, J . H.; Webb, W. W. Science 1990, 248,
73. (b) Mertz, J .; Xu, C.; Webb, W. W. Opt. Lett. 1995, 20, 2532.
(12) Denk, W.; Svoboda, K. Neuron 1997, 18, 351.
(13) Ko¨hler, R. H.; Cao, J .; Zipfel, W. R.; Webb, W. W.; Hansen, M.
R. Science 1997, 276, 2039.
(14) Xu, C.; Zipfel, W. R.; Shear, J . B.; William, R. M.; Webb, W. W.
Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10763.
(15) Denk, W. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6629.
(16) Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245, 843.
(17) Dvornikov, A. S.; Rentzepis, P. M. W. Opt. Commun. 1995, 119,
341.
(18) Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.;
Ehrlich, J . E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y.
S.; McCord-Maughon, D.; Qin, J .; Ro¨ckel, H.; Rumi, M.; Wu, X.-L.;
Marder, S. R.; Perry, J . W. Nature 1999, 398, 51.
(19) Bhawalkar, J . D.; Kumar, N. D.; Zhao, C. F.; Prasad, P. N. J .
Clin. Laser, Med. Surg. 1997, 15, 201.
(20) (a) Mason, W. T. Fluorescent and Luminescent Probes for
Biological Activity, 2nd ed.; Academic Press: New York, 1999. (b) de
Silva, A. P.; Gunaratne, H, Q, N.; Gunnlaugsson, T.; Huxley, A. J . M.;
McCoy, C. P.; Rademacher, J . T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
(21) (a) Ojida, A.; Mito-oka, Y.; Inoue, M.; Hamchi, I. J . Am. Chem.
Soc. 2002, 124, 6256. (b) Minta, A.; Kao, J . P. Y.; Tsien, R. Y. J . Biol.
Chem. 1989, 264, 8171.
(22) (a) Cahalan, M. D.; Parker, I.; Wei, S. H.; Miller, M. J . Nature
2002, 2, 872. (b) Euler, T.; Detwiller, P. B.; Denk, W. Nature 2002,
418, 845. (c) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S.
W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434.
(d) Taki, M.; Wolford, J . L.; O’Halloran, T. V. J . Am. Chem. Soc. 2004,
126, 712.
(6) Fleitz, P. A.; Brant, M. C.; Sutherland, R. L.; Strohkendl, F. P.;
Larson, J . R.; Dalton, L. R. SPIE Proc. 1998, 91, 3472.
(7) He, G. S.; Bhawalkar, J . D.; Zhao, C. F.; Prasad, P. N. Appl. Phys.
Lett. 1995, 67, 2433.
10.1021/jo049124a CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/22/2004
J . Org. Chem. 2004, 69, 5749-5751
5749