10.1002/adsc.201801193
Advanced Synthesis & Catalysis
2074. d) G. T. Li, X. G. Huang, L. M. Zhang, Angew.
Wang, D. D. Liang, L. Y. Liu, J. C. Zhang, Q. Zhu,
Angew. Chem. 2011, 123, 5796; Angew. Chem. Int. Ed.
2011, 50, 5678. c) L. Zhang, X. H. Bi, X. X. Guan, X.
Q. Li, Q. Liu, B.-D. Barry, P. Q. Liao, Angew. Chem.
2013, 125, 11513; Angew. Chem., Int. Ed., 2013, 52,
11303. d) J. M. Liu, X. Zhang, H. Yi, C. Liu, R. Liu, H.
Zhang, K. L. Zhuo, A. W. Lei, Angew. Chem. 2015,
127, 1277; Angew. Chem., Int. Ed. 2015, 54, 1261. e) H.
Huang, J. Cai, X. Ji, F. Xiao, Y. Chen, G. J. Deng,
Angew. Chem. 2016, 128, 315; Angew. Chem. Int. Ed.
2016, 55, 307. f) T. Wdowik, S. R. Chemler, J. Am.
Chem. Soc. 2017, 139, 9515.
Chem. 2008, 120, 352; Angew. Chem., Int. Ed. 2008, 47,
346. e) T. Newhouse, C. A. Lewis, P. S. Baran, J. Am.
Chem. Soc. 2009, 131, 6360. f) S. Tong, Z. R. Xu, M.
Mamboury, Q. Wang, J. P. Zhu, Angew. Chem. 2015,
127, 11975; Angew. Chem., Int. Ed. 2015, 54, 11809.
[6] For selected examples, see: a) R. Bernini, G. Fabrizi, A.
Sferrazza, S. Cacchi, Angew. Chem. 2009, 121, 8222;
Angew. Chem., Int. Ed. 2009, 48, 8078. b) D. B. Zhao,
Z. Z. Shi, F. Glorius, Angew. Chem. 2013, 125, 12652;
Angew. Chem., Int. Ed. 2013, 52, 12426. c) B. Q. Liu,
C. Song, C. Sun, S. G. Zhou, J. P. Zhu, J. Am. Chem.
Soc. 2013, 135, 16625. d) J. Zoller, D. C. Fabry, M. A.
Ronge, M. Rueping, Angew. Chem. 2014, 126, 13480;
Angew. Chem., Int. Ed. 2014, 53, 13264. e) H. Wang,
M. Moselage, M. J. Gonzalez, L. Ackermann, ACS
Catal. 2016, 6, 2705.
[14] a) C. Zhang, N. Jiao, J. Am. Chem. Soc. 2010, 132, 28.
b) W. Wei, X. Y. Hu, X. W. Yan, Q. Zhang, M. Cheng,
J. X. Ji, Chem. Commun. 2012, 48, 305. c) D. C.
Mohan, S. N. Rao, S. Adimurthy, J. Org. Chem. 2013,
78, 1266. d) M. Selvaraju, T. Y. Ye, C. H. Li, P. H. Ho,
C. M. Sun, Chem. Commun. 2016, 52, 6621. e) A.
Sagadevan, A. Ragupathi, C. C. Lin, J. R. Hwu, K. C.
Hwang, Green Chem. 2015, 17, 1113. f) A. S. K.
Hashmi, M. C. Blanco Jaimes, A. M. Schuster, F.
Rominger, J. Org. Chem. 2012, 77, 6394. g) S. Y. Mai,
C. Q. Rao, M. Chen, J. H. Su, J. F. Du, Q. L. Song,
Chem. Commun. 2017, 53, 10366. h) X. X. Peng, D.
Wei, W. J. Han, F. Chen, W. Yu, B. Han, ACS Catal.
2017, 7, 7830.
[7] a) Z. J. Liu, J. P. Vors, E. R. F. Gesing, C. Bolm, Green
Chem. 2011, 13, 42. b) Y. C. Teo, F. F. Yong, S. Sim,
Tetrahedron 2013, 69, 7279. c) W. J. Yoo, T.
Tsukamoto, S. Kobayashi, Org. Lett. 2015, 17, 3640. d)
S. G. Rull, J. F. Blandez, M. R. Fructos, T. R.
Belderrain, M. C. Nicasio, Adv. Synth. Catal. 2015, 357,
907.
[8] Y. Oda, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2012,
14, 664.
[15] Q. Q. Lu, J. Zhang, G. L. Zhao, Y. Qi, H. M. Wang, A.
W. Lei, J. Am. Chem. Soc. 2013, 135, 11481.
[9] a) A. Mukerjee, R. Ashare, Chem. Rev. 1991, 91, 1. b)
A. Ranjan, R. Yerande, P. B. Wakchaure, S. G.
Yerande, D. H. Dethe, Org. Lett. 2014, 16, 5788. c) P.
Zhao, Y. Liu, C. J. Xi, Org. Lett. 2015, 17, 4388. d) W.
S. Guo, S. L. Li, L. Tang, M. Li, L. R. Wen, C. Chen,
Org. Lett. 2015, 17, 1232. e) X. D. Tang, Z. Z. Zhu, C.
R. Qi, W. Q. Wu, H. F. Jiang, Org. Lett. 2016, 18, 180.
f) Z. W. Zhou, F. C. Jia, C. Xu, S. F. Jiang, Y. D. Wu,
A. X. Wu, Chem. Commun. 2017, 53, 1056. g) A. Modi,
P. Sau, B. K. Patel, Org. Lett. 2017, 19, 6128.
[16] J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534.
[17] B. Xu, E. M. Hartigan, G. Feula, Z. Huang, J. P.
Lumb, B. A. Arndtsen, Angew. Chem. 2016, 128,
16034; Angew. Chem., Int. Ed. 2016, 55, 15802.
[18] We have tried to synthesize these substrates (1) which
containing NO2, CF3 substitution at R1, but we have
difficult in synthesizing them. When R1 was changed
to OMe, no desired product was obtained.
[10] a) L. Benati, G. Calestani, R. Leardini, M. Minozzi, D.
Nanni, J. Org. Chem. 2003, 68, 3454. b) T. Saito, H.
Nihei, T. Otani, T. Suyama, N. Furukawa, M. Saito,
Chem. Commun. 2008, 2, 172. c) W. Y. Hao, J. B.
Zeng, M. Z. Cai, Chem. Commun. 2014, 50, 11686. d)
R. J. Liu, P. F. Wang, W. K. Yuan, L. R. Wen, M. Li,
Adv. Synth. Catal. 2017, 359, 1373.
[19] CCDC 1832456 (3ca), 1832420 (3ae) and 1837650
(4c) contain the supplementary crystallographic data
for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data
[20] C. Glaser, Annalen der Chemie und Pharmacie. 1870,
154, 137–171.
[11] a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger,
Angew. Chem. 2006, 118, 7292; Angew. Chem., Int. Ed.
2006, 45, 7134. b) X. Zeng, Chem. Rev. 2013, 113,
6864.
[21] K. Gilmore, I. V. Alabugin, Chem. Rev. 2011, 111,
6513.
[22] a) K. K. Toh, Y. F. Wang, E. P. J. Ng, S. Chiba, J. Am.
Chem. Soc. 2011, 133, 13942. b) H. H. Peng, N. G.
Akhmedov, Y. F. Liang, N. Jiao, X. D. Shi, J. Am.
Chem. Soc. 2015, 137, 8912. c) H. Sterckx, H. De
Houwer, C. Mensch, C. Caretti, K. A. Tehrani, W. A.
Herrebout, S. Van Doorslaer, B. U. W. Maes, Chem.
Sci. 2016, 7, 346. d) K. Liu, G. Y. Xu, J. T. Sun, Chem.
Sci. 2018, 9, 634. e) S. X. Zhai, S. X. Qiu, X. M. Chen,
C. Tao, Y. Li, B. Cheng, H. F. Wan, H. B. Zhai, ACS
Catal. 2018, 8, 6645.
[12] For some reviews of copper/oxygen systems, see: a) A.
E. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047.
b) L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem.
Rev. 2004, 104, 1013. c) C. Zhang, C. H. Tang, N. Jiao,
Chem. Soc. Rev. 2012, 41, 3464. d) S. E. Allen, R. R.
Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem.
Rev. 2013, 113, 6234. e) S. D. McCann, S. S. Stahl,
Acc.Chem. Res. 2015, 48, 1756.
[13] For some recent examples of copper/oxygen systems,
see: a) C. P. Frazier, J. R. Engelking, J. R. de Alaniz, J.
Am. Chem. Soc. 2011, 133, 10430. b) H. G. Wang, Y.
5
This article is protected by copyright. All rights reserved.