ChemComm
Communication
O. Hayashida, H. Masuda and Y. Aoyama, J. Am. Chem. Soc., 1997,
119, 4117; (d) J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt,
S. T. Nguyen and J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450;
(e) S. H. Cho, B. Ma, S. B. T. Nguyen, J. T. Hupp and
T. E. Albrecht-Schmitt, Chem. Commun., 2006, 2563.
4 (a) E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown
and J. R. Long, Science, 2012, 335, 1606; (b) R. V. Afonso, J. Durao,
A. Mendes, A. M. Damas and L. Gales, Angew. Chem., Int. Ed., 2010,
49, 3034; (c) H. Oh, I. Savchenko, A. Mavrandonakis, T. Heine and
M. Hirscher, ACS Nano, 2014, 8, 761; (d) D. Bradshaw, T. J. Prior,
E. J. Cussen, J. B. Claridge and M. J. Rosseinsky, J. Am. Chem. Soc.,
2004, 126, 6106; (e) R. Vaidhyanathan, D. Bradshaw, J. N. Rebilly,
J. P. Barrio, J. A. Gould, N. G. Berry and M. J. Rosseinsky, Angew.
Chem., Int. Ed., 2006, 45, 6495.
5 J. R. Holst, A. Trewin and A. I. Cooper, Nat. Chem., 2010, 2, 915.
6 (a) K. E. Maly, J. Mater. Chem., 2009, 19, 1781; (b) R. Afonso,
A. Mendes and L. Gales, J. Mater. Chem., 2012, 22, 1709;
(c) J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213;
(d) M. L. Foo, R. Matsuda and S. Kitagawa, Chem. Mater., 2014,
26, 310; (e) S. M. Cohen, Chem. Sci., 2010, 1, 32; ( f ) K. L. Mulfort and
J. T. Hupp, J. Am. Chem. Soc., 2007, 129, 9604; (g) P. Dechambenoit,
S. Ferlay, N. Kyritsakas and M. W. Hosseini, Chem. Commun., 2009,
1559; (h) T. Fukushima, S. Horike, Y. Inubushi, K. Nakagawa,
Y. Kubota, M. Takata and S. Kitagawa, Angew. Chem., Int. Ed.,
2010, 49, 4820.
inability of 3 to crystallise alone suggests that all-amide domains
are unlikely. It is encouraging to find that all the amides were
incorporated, but interesting to note the difference between the
secondary and tertiary amides. In the former case, alloy formation
was only possible for the most dilute mixture (1a :3a,b = 5:1).
However, when it did occur incorporation was efficient, the ratio in
the crystals being similar to that in solution. For the tertiary amides
incorporation was possible at higher starting concentrations, but
was slightly less efficient (especially in the case of 3c).
In conclusion, we have found that the cholanoate NPSUs 1,
already capable of variation and alloy formation, can be further
modified by inclusion of cholanamides 3. If this discovery can
be generalised it opens the way to a range of new materials in
which complex functional units are positioned in the channels
of nanoporous crystals.
We thank the ‘‘Sapienza’’ University of Rome for financial
support to L. T. L. B. is a member of the Bristol Centre for
Functional Nanomaterials, an EPSRC-funded Doctoral Training
Centre.
7 See for example: (a) C. H. Gorbitz, Chem. – Eur. J., 2001, 7, 5153;
(b) C. H. Gorbitz, Chem. – Eur. J., 2007, 13, 1022; (c) D. V. Soldatov,
I. L. Moudrakovski and J. A. Ripmeester, Angew. Chem., Int. Ed.,
2004, 43, 6308; (d) D. V. Soldatov, I. L. Moudrakovski, E. V. Grachev
and J. A. Ripmeester, J. Am. Chem. Soc., 2006, 128, 6737.
8 (a) A. L. Sisson, V. del Amo Sanchez, G. Magro, A. M. E. Griffin,
S. Shah, J. P. H. Charmant and A. P. Davis, Angew. Chem., Int. Ed.,
2005, 44, 6878; (b) R. Natarajan, J. P. H. Charmant, A. G. Orpen and
A. P. Davis, Angew. Chem., Int. Ed., 2010, 49, 5125; (c) R. Natarajan,
G. Magro, L. N. Bridgland, A. Sirikulkajorn, S. Narayanan, L. E. Ryan,
M. F. Haddow, A. G. Orpen, J. P. H. Charmant, A. Hudson and
A. P. Davis, Angew. Chem., Int. Ed., 2011, 50, 11386; (d) M. Mastalertz,
Angew. Chem., Int. Ed., 2012, 51, 584; (e) R. Natarajan, L. Bridgland,
A. Sirikulkajorn, J.-H. Lee, M. F. Haddow, G. Magro, B. Ali,
S. Narayanan, P. Strickland, J. P. H. Charmant, A. G. Orpen,
N. B. McKeown, C. G. Bezzu and A. P. Davis, J. Am. Chem. Soc.,
2013, 135, 16912.
Notes and references
1 (a) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and J. Rosseinsky,
Acc. Chem. Res., 2005, 38, 273; (b) M. D. Hollingsworth, Science, 2002,
295, 2410; (c) G. Ferey, C. Mellot-Draznieks, C. Serre and F. Millange, Acc.
Chem. Res., 2005, 38, 217; (d) S. Kitagawa, R. Kitaura and S. Noro, Angew.
Chem., Int. Ed., 2004, 43, 2334; (e) N. B. McKeown, J. Mater. Chem., 2010,
20, 10588; ( f ) M. K. Zaworogto, Angew. Chem., Int. Ed., 2000, 39, 3052;
(g) P. J. Langley and J. Hulliger, Chem. Soc. Rev., 1999, 28, 279.
2 (a) H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, Science,
2013, 341, 974; (b) R. E. Morris and P. S. Wheatley, Angew. Chem., Int.
Ed., 2008, 47, 4966; (c) S. Ma and H. C. Zhou, Chem. Commun., 2010,
46, 44; (d) M. E. Davis, Nature, 2002, 417, 813; (e) A. Comotti,
S. Bracco, G. Distefano and P. Sozzani, Chem. Commun., 2009, 284;
( f ) H. Kim, Y. Kim, M. Yoon, S. Lim, S. M. Park, G. Seo and K. Kim,
J. Am. Chem. Soc., 2010, 132, 12200; (g) J. L. C. Rowsell and
O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4670.
9 V. del Amo, K. Bhattarai, M. Nissinen, K. Rissanen, M. N. Perez-
Payan and A. P. Davis, Synlett, 2005, 1319.
3 (a) K. Ikemoto, Y. Inokuma and M. Fujita, Angew. Chem., Int. Ed.,
2010, 49, 5750; (b) J. Yang, M. B. Dewal and L. S. Shimizu, J. Am. 10 The combination 1aÁ3a was not examined, in the expectation that
Chem. Soc., 2006, 128, 8122; (c) K. Endo, T. Koike, T. Sawaki,
the two components would be indistinguishable.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4803--4805 | 4805