Chemical Science
Edge Article
likely involved in this transformation (Scheme 5b). It is known
that 5-hexenyl radical analogues undergo 5-exo-cyclization to
the cyclopentylcarbinyl radical and are commonly employed as
radical clocks.20 The reaction with substituted 1,6-diene 12
delivered a cyclization product 13 which suggests that the
addition of triuoromethyl radical to the alkene forms an alkyl
radical followed by 5-exo-cyclization (Scheme 5c). On the basis
of the above observations and literature reports,21 a putative
radical chain pathway was illustrated as shown in Scheme 5d.
First, thermal decomposition of the radical initiator IN-3
produces an aryl carboxylic radical I or an aryl radical I0,22 which
reacts with triuoromethanesulfonyl azide generating tri-
uoromethanesulfonyl radical II, following by SO2 release to
form the triuoromethyl radical III.23 Subsequent addition of III
onto the alkene provides an alkyl radical IV. Finally, azidation of
IV with N3SO2CF3 yields the desired product 2 along with
regeneration of the chain carrying radical II.
C. Zhu, J. Am. Chem. Soc., 2019, 141, 11440; (e) W. Kong,
M. Casimiro, N. Fuentes, E. Merino and C. Nevado, Angew.
Chem., Int. Ed., 2013, 52, 13086; (f) W. Kong, M. Casimiro,
E. Merino and C. Nevado, J. Am. Chem. Soc., 2013, 135,
14480; (g) Y. Li and A. Studer, Angew. Chem., Int. Ed., 2012,
51, 8221; (h) L.-Z. Yu, Y. Wei and M. Shi, Chem. Commun.,
2016, 52, 13163; (i) N. Zhu, F. Wang, P. Chen, J. Ye and
G. Liu, Org. Lett., 2015, 17, 3580; (j) F. Wang, D. Wang,
X. Wan, L. Wu, P. Chen and G. Liu, J. Am. Chem. Soc.,
2016, 138, 15547; (k) H. Li, S.-J. Shen, C.-L. Zhu and H. Xu,
J. Am. Chem. Soc., 2018, 140, 10619; (l) J. Liu, S. Wu, J. Yu,
C. Lu, Z. Wu, X. Wu, X.-S. Xue and C. Zhu, Angew. Chem.,
Int. Ed., 2020, 59, 8195; (m) N. Tang, S. Yang, X. Wu and
C. Zhu, Tetrahedron, 2019, 75, 1639; (n) D. Chen, Z. Wu,
Y. Yao and C. Zhu, Org. Chem. Front., 2018, 5, 2370; (o)
R. Ren, Z. Wu, L. Huan and C. Zhu, Adv. Synth. Catal.,
2017, 359, 3052; (p) Z. Wu, R. Ren and C. Zhu, Angew.
Chem., Int. Ed., 2016, 55, 10821; For selected recent
reviews:(q) Z.-L. Li, G.-C. Fang, Q.-S. Gu and X.-Y. Liu,
Chem. Soc. Rev., 2020, 49, 32; (r) Y. Ping and W. Kong,
Synthesis, 2020, 52, 979; (s) H.-Y. Tu, S. Zhu, F.-L. Qing and
L. Chu, Synthesis, 2020, 52, 1346; (t) H. Mei, Z. Yin, J. Liu,
H. Sun and J. Han, Chin. J. Chem., 2019, 37, 292; (u) T. Niu,
J. Liu, X. Wu and C. Zhu, Chin. J. Chem., 2020, 38, 803; (v)
K. Wu, Y. Liang and N. Jiao, Molecules, 2016, 21, 352.
Conclusions
In summary, we have developed a transition-metal free azido-
triuoromethylation reaction of unactivated alkenes for the
synthesis of vicinal triuoromethyl azides. This unprecedented
difunctionalization process employs triuoromethanesulfonyl
azide as the sole precursor for both CF3 and N3. The application
was demonstrated by late-stage functionalization of complex
bio-important molecules and converting the products into the
corresponding CF3-containing amine, lactam, and other privi-
leged heterocycles. This study provides an atom economic, cost
efficient, and operationally simple method for the synthesis of
valuable vicinal difunctionalized structures from chemical
feedstocks.
¨
3 (a) K. Muller, C. Faeh and F. Diederich, Science, 2017, 317,
1881; (b) S. Purser, P. R. Moore, S. Swallowb and
V. Gouverneur, Chem. Soc. Rev., 2008, 37, 320; (c)
E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly and
N. A. Meanwell, J. Med. Chem., 2015, 58, 8315; (d) J. Nie,
H.-C. Guo, D. Cahard and J.-A. Ma, Chem. Rev., 2011, 111,
455; (e) E. Merino and C. Nevado, Chem. Soc. Rev., 2014,
´
43, 6598; (f) C. Alonso, E. Martınez de Marigorta,
G. Rubiales and F. Palacios, Chem. Rev., 2015, 115, 1847;
(g) T. Liang, C. N. Neumann and T. Ritter, Angew. Chem.,
Int. Ed., 2013, 52, 8214.
Conflicts of interest
There are no conicts to declare.
4 (a) S. Chiba, Synlett, 2012, 23, 21; (b) G. Liang, M. F. Chiou,
Y. Li and H. Bao, Green Synth. Catal., 2020, 1, 86.
5 (a) P. Thirumurugan, D. Matosiuk and K. Jozwiak, Chem.
Rev., 2013, 113, 4905; (b) G. Meng, T. Guo, T. Ma, J. Zhang,
Y. Shen, K. B. Sharpless and J. Dong, Nature, 2019, 574, 86.
6 (a) F. Wang, X. Qi, Z. Liang, P. Chen and G. Liu, Angew.
Chem., Int. Ed., 2014, 53, 1881; (b) M. Yang, W. Wang,
Y. Liu, L. Feng and X. Ju, Chin. J. Chem., 2014, 32, 833.
7 R. R. Karimov, A. Sharma and J. F. Hartwig, ACS Cent. Sci.,
2016, 2, 715.
Acknowledgements
We are grateful for the nancial support from NSFC (21971198
and 21772148), the Fundamental Research Funds for Central
Universities (2042019kf0208), Large-scale Instrument and
Equipment Sharing Foundation of Wuhan University and the
Natural Science Foundation of Hubei Province (Grant No.
2020CFA036). We also thank Dr Yiyang Liu (Pzer) for helpful
discussion.
8 C. Zhu, C. Wang, Q. Qin, S. Yruegas, C. D. Martin and H. Xu,
ACS Catal., 2018, 8, 5032.
Notes and references
9 (a) Y. Zhang, X. Han, J. Zhao, J. Qian, T. Li, Y. Tang and
H.-Y. Zhang, Adv. Synth. Catal., 2018, 360, 2659; (b)
Y. Xiong, Y. Sun and G. Zhang, Org. Lett., 2018, 20, 6250;
(c) H. Xiong, N. Ramkumar, M.-F. Chiou, W. Jian, Y. Li,
J.-H. Su, X. Zhang and H. Bao, Nat. Commun., 2019, 10, 122.
1 K. R. Campos, P. J. Coleman, J. C. Alvarez, S. D. Dreher,
R. M. Garbaccio, N. K. Terrett, R. D. Tillyer, M. D. Truppo
and E. R. Parmee, Science, 2019, 363, eaat0805.
2 Selected examples: (a) T. Koike and M. Akita, Chem, 2018, 4,
409; (b) Y. Li, Y. Liang, J. Dong, Y. Deng, C. Zhao, Z. Su, 10 (a) G. Dagousset, A. Carboni, E. Magnier and G. Masson, Org.
W. Guan, X. Bi, Q. Liu and J. Fu, J. Am. Chem. Soc., 2019,
141, 18475; (c) S. Kawamura, H. Egami and M. Sodeoka, J.
Am. Chem. Soc., 2015, 137, 4865; (d) H. Xiao, H. Shen and
Lett., 2014, 16, 4340; (b) X. Geng, F. Lin, X. Wang and N. Jiao,
Org. Lett., 2017, 19, 4738; (c) H. Liu, Q. Guo, C. Chen,
M. Wang and Z. Xu, Org. Chem. Front., 2018, 5, 1522.
3214 | Chem. Sci., 2021, 12, 3210–3215
© 2021 The Author(s). Published by the Royal Society of Chemistry