2
3
3,5-Br
3,5-I
3-Cl, 5-I
5-Br
H
H
6b
6c
6d
6e
6f
23
23
24
20
20
24
20
24
24
73
76
74
96
95
81
83
80
79
97
94
97
78
78
75
85
96
91
+34.1
+102.3
−20.8
−32.3
−55.5
+27.3
−36.5
−26.5
−55.6
H
4
H
5
4-NO2
4-NO2
4-OMe
4-F
6
7
5-Br
H
6g
6h
6i
8
9
H
4-Br
4-Cl
10
H
6j
a Isolated yield.
b Determined by chiral HPLC analysis.
c
25
Measured [α] (c 0.4, CHCl3).
D
The enantioselectivity was also affected by the electronic properties of the substituent’s of salicylaldehydes as 3,5-dibromo and 3,5-
diiodo salicylaldehydes showed higher ee than the un-substituted salicylicaldehyde (Table 4, entries 2-4 and 8–10), while 4-methoxy
cinnamaldehyde gives moderate yields and relative lower ee value (Table 4, entry 7).
In summary, A group of novel proline based organocatalysts derived from Boc-L-proline, 3a-d, have been obtained via a simple
synthesis. The catalytic performance of the resultant synthetic products for the domino oxa-Michael-aldol reactions between
salicylaldehyde and cinnamaldehyde has been evaluated. It has been found that, out of all four organocatalysts, 3a was found to be
efficient for the oxa-Michael-aldol reactions under investigation. It has excellent catalytic activity affording excellent enantioselectivity
and moderate to high yields even at low dosages of 10 mol% along with the 2-NO2-PhCOOH (10 mol%) as additives and 100 mg of MS 4Å.
Acknowledgments
We acknowledge, Dr. Smt. S. S. Kadam, Principal and Prof. W. N. Jadhav, Head Department of Chemistry, Dnyanopasak College,
Parbhani for providing necessary facilities and University Grant Commission, Delhi for the award of the Junior Research Fellowship.
References
[1] D. Enders, C. Grondal, M.R.M. Hüttl, Angew. Chem. Int. Ed. 46 (2007) 1570-1581.
[2] E.A. Couladourous, A.T. Strongilos, Angew. Chem. 114 (2002) 3829-3832.
[3] K.C. Nicolaou, J.A. Pfefferkorn, A.J. Roecker, et al., J. Am. Chem. Soc. 122 (2000) 9939-9953.
[4] W.S. Bowers, T. Ohta, J.S. Cleere, P.A. Marsella, Science. 193 (1976) 542-547.
[5] (a) P.T. Kaye, M.A. Musa, X.W. Nocada, R.S. Robinson, Org. Biomol. Chem. 1 (2003) 1133-1138.
(b) P.T. Kaye, M.A. Musa, Synthesis 18 (2002) 2701-2706.
(c) B. Lesch, S. Brase, Angew. Chem. 116 (2004) 118-120.
(d) B. Lesch, S. Bruse, Angew. Chem. Int. Ed. 43 (2004) 115-118.
(e) B. Lesch, J. TorUng, S. Vanderheiden, S. Bruse, Adv. Synth. Catal. 347 (2005) 555-562.
(f) G.L. Zhao, Y.L. Shi, M. Shi, Org. Lett. 7 (2005) 4527-4530.
[6] (a)H. Pellissier, Tetrahedron 62 (2006) 1619-1655.
(b) H. Pellissier, Tetrahedron 62 (2006) 2143-2173.
[7] (a) Y. Yamamoto, N. Momiyama, H. Yamamoto, J. Am. Chem. Soc. 126 (2004) 5962-5963.
(b) M. Marigo, T. Schulte, J. Franzen, K.A. Jorgensen, J. Am. Chem. Soc. 127 (2005) 15710-15711.
(c) J.W. Yang, M.T.H. Fonseca, B. List, J. Am. Chem. Soc. 127 (2005) 15036-15037.
(d) Y. Huang, A.M. Walji, C.H. Larsen, J. Am. Chem. Soc. 127 (2005) 15051-15053.
[8] (a) P.B, Thorat, S.V. Goswami, B.C. Khade, S.R. Bhusare, Tetrahedron: Asymmetry 23 (2012) 1320-1325.
(b) P.B, Thorat, S.V. Goswami, B.C. Khade, S.R. Bhusare, Tetrahedron: Asymmetry 53 (2012) 6083-6086.
(c) P.B, Thorat, S.V. Goswami, R.L. Magar, B.R. Patil, S.R. Bhusare, Eur. J. Org. Chem. 24 (2013) 5509-5516.
[9] H. Sundén, I. Ibrahem, G.L. Zhao, L. Eriksson, A. Córdova, Chem. Eur J. 13 (2007) 574-581.
[10] (a) H. Huang, E.N. Jacobsen, J. Am. Chem. Soc. 128 (2006) 7170-7171.
(b) J. Li, S. Luo, J. Cheng, J. Org. Chem. 74 (2009) 1747-1750.