Full Paper
muffle furnace at 450 °C for 1 h (heating rate 3 °C min–1, in air).
The thickness of obtained titanium dioxide film was about 15 μm,
determined by using an Alpha-Step D-100 profilometer (KLA-Ten-
cor). Sensibilization of titanium dioxide was performed by soaking
[6] H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, X. Liu, Chem. Soc. Rev.
2014, 43, 3259–3302.
[7] E. Baranoff, J.-H. Yum, I. Jung, R. Vulcano, M. Grätzel, M. K. Nazeeruddin,
Chem. Asian J. 2010, 5, 496–499.
[8] E. Baranoff, J.-H. Yum, M. Grätzel, M. K. Nazeeruddin, J. Organomet. Chem.
2009, 694, 2661–2670.
[9] J. Frey, B. F. E. Curchod, R. Scopelliti, I. Tavernelli, U. Rothlisberger, M. K.
Nazeeruddin, E. Baranoff, Dalton Trans. 2014, 43, 5667–5679.
[10] A. Mishra, M. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 2009, 48, 2474–
2499; Angew. Chem. 2009, 121, 2510.
[11] Y.-J. Yuan, J.-Y. Zhang, Z.-T. Yu, J.-Y. Feng, W.-J. Luo, J.-H. Ye, Z.-G. Zou,
Inorg. Chem. 2012, 51, 4123–4133.
[12] K. Hasan, A. K. Bansal, I. D. W. Samuel, C. Roldan-Carmona, H. J. Bolink,
E. Zysman-Colman, Sci. Rep. 2015, 5, 12325.
[13] Q.-L. Xu, C.-C. Wang, T.-Y. Li, M.-Y. Teng, S. Zhang, Y.-M. Jing, X. Yang, W.-
N. Li, C. Lin, Y.-X. Zheng, J.-L. Zuo, X.-Z. You, Inorg. Chem. 2013, 52, 4916–
4925.
[14] W.-S. Huang, J. T. Lin, C.-H. Chien, Y.-T. Tao, Sh.-S. h. Sun, Y.-S. h. Wen,
Chem. Mater. 2004, 16, 2480–2488.
[15] G.-G. Shan, H.-B. Li, H.-Z. Sun, H.-T. Cao, D.-X. Zhu, Z.-M. Su, Dalton Trans.
2013, 42, 11056–11065.
[16] S. I. Bezzubov, V. D. Dolzhenko, S. I. Troyanov, Yu. M. Kiselev, Inorg. Chim.
Acta 2014, 415, 22–30.
[17] S. I. Bezzubov, V. D. Dolzhenko, Yu. M. Kiselev, Russ. J. Inorg. Chem. 2014,
59, 571–577.
[18] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Ada-
chi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001,
123, 4304–4312.
[19] D. Hanss, J. C. Freys, G. Bernardinelli, O. S. Wenger, Eur. J. Inorg. Chem.
2009, 4850–4859.
[20] W. Jiang, Y. Gao, Y. Sun, F. Ding, Y. Xu, Z. Bian, F. Li, J. Bian, C. Huang,
Inorg. Chem. 2010, 49, 3252–3260.
of photoanodes in methanol solutions of the dye (ca. 5 × 10–4
for 24 h.
M)
A three-electrode photoelectrochemical cell PECC-2 (Zahner) was
used for the photoanode potential measurements. The photoanode
served as the working electrode and a platinum wire with the sur-
face area of 5 cm2 was used as the auxiliary electrode, a silver wire
was used as the reference electrode. The voltammetric measure-
ments were performed with an IPC Pro MF potentiostat under AM
1.5 global one sun of illumination (100 mW cm–2) provided by a
solar simulator (Newport 96000). The illumination power at different
distances was determined with a Nova apparatus (OPHIR-SPIRICON
Inc.). Current–voltage characteristics of the DSSC and the photocur-
rent density at the short-circuit voltage were performed by the two-
electrode scheme transients of photoanode potential and the pho-
tocurrent density at the short-circuit voltage was measured under
irradiation and in the dark. The photoanode area was 1.0 cm2. The
illuminated photoanode area was restricted by a mask to 0.196 cm2.
The illumination was performed from the side of the TiO2 photoan-
ode with the adsorbed dye.
Supporting Information (see footnote on the first page of this
article): Results of the DFT and TD-DFT calculations, details of the
deconvolution of absorption spectra into their Gaussian compo-
nents, emission spectra, 1H and 31P NMR spectra of ligands and
complexes 1–3, and H,H COSY spectrum of 1.
[21] M. C. Aragoni, M. Arca, G. Crisponi, V. M. Nurchi, Anal. Chim. Acta 1995,
316, 195–204.
[22] G. Hungerford, J. Benesch, J. F. Mano, R. L. Reis, Photochem. Photobiol.
Sci. 2007, 6, 152–158.
[23] K. R. Beebe, R. J. Pell, M. B. Seasholtz, Chemometrics: A Practical Guide,
Wiley, New York, 1998, p. 360.
[24] A. M. Oki, R. J. Morgan, Synth. Commun. 1995, 25, 4093–4097.
[25] H. F. Ridley, R. G. W. Spickett, G. M. Timmis, J. Heterocycl. Chem. 1965, 2,
453–456.
[26] C. Zhu, Y. Wei, ChemSusChem 2011, 4, 1082–1086.
[27] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
[28] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7–13.
[30] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H.
Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M.
Dupius, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347–1363.
[31] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem.
1994, 98, 11623–11627.
Acknowledgments
This work was supported by the Russian Foundation for Basic
Research (RFBR) (project numbers 13-03-00972 a, 13-03-12415),
the Russian Science Foundation (RSCF) (project number 14-23-
00176), and the Tomsk State University Competitiveness Im-
provement Program. Dr. Ivan Vatsouro and Dr. Kirill Puchnin are
acknowledged for assistance concerning NMR measurements.
Keywords: Iridium · N ligands · Dyes/pigments · UV/Vis
spectroscopy · Luminescence · Density functional calculations
[1] B. O'Regan, M. Grätzel, Nature 1991, 353, 737–740.
[2] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010,
110, 6595–6663.
[3] C. A. Bignozzi, R. Argazzi, R. Boaretto, E. Busatto, S. Carli, F. Ronconi, S.
Caramori, Coord. Chem. Rev. 2013, 257, 1472–1492.
[4] T. Bessho, E. Yoneda, J. H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U.
Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131,
5930–5934.
[32] D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta
1990, 77, 123–141.
[33] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72,
650–654.
[5] P. G. Bomben, K. C. D. Robson, B. D. Koivisto, C. P. Berlinguette, Coord.
Chem. Rev. 2012, 256, 1438–1450.
Received: September 17, 2015
Published Online: December 21, 2015
Eur. J. Inorg. Chem. 2016, 347–354
354
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim