Communication
Organic & Biomolecular Chemistry
H-bonds, is found in all three binding subsites for the p-hydro-
xybenzamide, azepane and benzophenone moieties, showing
that PKCε in this case is unable to adapt to the “remote
control” effect of azepane fluorine perturbation.
Contrary to the case of PKCε, PKA as a receptor is insensi-
tive to the fluorination perturbation in either 1c or 1d
(Fig. 2b). Comparison of 1c and 1d in the ATP site of PKA
shows highly preserved interactions in the p-hydroxybenz-
6 V. Gouverneur and K. Seppelt, Chem. Rev., 2015, 115, the-
matic issue.
7 P. Kulanthaivel, Y. F. Hallock, C. Boros, S. M. Hamilton,
W. P. Janzen, L. M. Ballas, C. R. Loomis, J. B. Jiang and
B. Katz, J. Am. Chem. Soc., 1993, 115, 6452–6453.
8 A. C. Newton, J. Biol. Chem., 1995, 270, 28495–28498.
9 D. Mochly-Rosen, K. Das and K. V. Grimes, Nat. Rev. Drug
Discovery, 2012, 11, 937–957.
amide and benzophenone binding regions, along with com- 10 J. Setyawan, K. Koide, T. C. Diller, M. E. Bunnage,
parable binding conformations in the azepane ring.21 This is
consistent with the observed binding affinities of these two
S. S. Taylor, K. C. Nicolaou and L. L. Brunton, Mol.
Pharmacol., 1999, 56, 370–376.
compounds that are within 1.5 fold for PKA. For 1c, more 11 J. M. Arencibia, D. Pastor-Flores, A. F. Bauer, J. O. Schulze
H-bonding interactions are made to the azepane-binding
and R. M. Biondi, Biochim. Biophys. Acta, 2013, 1834, 1302–
1321.
subsite of PKCε than to that of PKA.21 Effectively, the
fluorine perturbation from the azepane ring in 1c and 1d is 12 P. Akamine, Madhusudan, L. L. Brunton, H. D. Ou,
discernable by PKCε but not PKA, due to the ability of the
PKCε pocket to specifically “solicit” a productive binding con-
J. M. Canaves, N. H. Xuong and S. S. Taylor, Biochemistry,
2004, 43, 85–96.
formation from 1c but not 1d. Stereocontrolled fluorination 13 N. Narayana, T. C. Diller, K. Koide, M. E. Bunnage,
here is shown as the origin of integrated chemical and confor-
mational control that engenders recognition cooperativity
between the ligand and protein for specificity enhancement
K. C. Nicolaou, L. L. Brunton, N. H. Xuong, L. F. Ten Eyck
and S. S. Taylor, Biochemistry, 1999, 38, 2367–
2376.
(i.e. 275 fold diffidence in Kd for 1c and 1d in PKCε vs. 1.43 14 K. Koide, M. E. Bunnage, L. Gomez Paloma, J. R. Kanter,
fold diffidence in Kd for 1c and 1d in PKA) in a protein-
S. S. Taylor, L. L. Brunton and K. C. Nicolaou, Chem. Biol.,
dependent manner.
1995, 2, 601–608.
While the perturbation investigation here utilized a small 15 Y. S. Lai, J. S. Mendoza, G. E. Jagdmann Jr.,
number of fluorine atoms, the divergent response from these
highly homologous active sites toward stereospecific fluorina-
tion on the ligand is clearly evident. This is the first demon-
D. S. Menaldino, C. K. Biggers, J. M. Heerding,
J. W. Wilson, S. E. Hall, J. B. Jiang, W. P. Janzen and
L. M. Ballas, J. Med. Chem., 1997, 40, 226–235.
stration of shape-controlling fluorination that extracts 16 A. R. Patel, G. Ball, L. Hunter and F. Liu, Org. Biomol.
additional selectivity potential in highly homologous kinase Chem., 2013, 11, 3781–3785.
ATP sites, which complements the existing avenues of inhibi- 17 A. R. Patel and F. Liu, Tetrahedron, 2013, 69, 744–752.
tor discovery by high-throughput-screening, structure-guided 18 A. R. Patel, L. Hunter, M. M. Bhadbhade and F. Liu,
protein–ligand
engineering
or
fragment-based
lead
Eur. J. Org. Chem., 2014, 2014, 2584–2593.
design.27–30 Given the large number of members in this family 19 A. R. Patel and F. Liu, Aust. J. Chem., 2015, 68, 50.
and also other ATP-binding proteins, this new strategy will 20 A. Furstner and O. R. Thiel, J. Org. Chem., 2000, 65, 1738–
open additional avenues for addressing the selectivity issues
1742.
not just for kinases but other ligand–protein interactions in 21 Details in the ESI.†
general.23,31,32 Furthermore, complex natural product ligands 22 M. A. Fabian, W. H. Biggs 3rd, D. K. Treiber,
that are amenable to fragment-based development,33 such as
balanol, can incorporate this fluorine-moderated fragment
approach by incrementally challenging the adaptability of a
protein target to further enhance selectivity.
C. E. Atteridge, M. D. Azimioara, M. G. Benedetti,
T. A. Carter, P. Ciceri, P. T. Edeen, M. Floyd, J. M. Ford,
M. Galvin, J. L. Gerlach, R. M. Grotzfeld, S. Herrgard,
D. E. Insko, M. A. Insko, A. G. Lai, J. M. Lelias, S. A. Mehta,
Z. V. Milanov, A. M. Velasco, L. M. Wodicka, H. K. Patel,
P. P. Zarrinkar and D. J. Lockhart, Nat. Biotechnol., 2005,
23, 329–336.
Notes and references
23 L. N. Johnson, Q. Rev. Biophys., 2009, 42, 1–40.
1 E. Persch, O. Dumele and F. Diederich, Angew. Chem., Int. 24 M. J. van Eis, J. P. Evenou, P. Floersheim, C. Gaul,
Ed., 2015, 54, 3290–3327.
S. W. Cowan-Jacob, L. Monovich, G. Rummel, W. Schuler,
W. Stark, A. Strauss, A. von Matt, E. Vangrevelinghe,
J. Wagner and N. Soldermann, Bioorg. Med. Chem. Lett.,
2011, 21, 7367–7372.
2 J. A. Berrocal, F. Di Meo, M. Garcia-Iglesias, R. P. Gosens,
E. W. Meijer, M. Linares and A. R. Palmans, Chem.
Commun., 2016, 52, 10870–10873.
3 Q. Wang, P. Zhang, L. Hoffman, S. Tripathi, D. Homouz, 25 C. R. Briggs, M. J. Allen, D. O’Hagan, D. J. Tozer,
Y. Liu, M. N. Waxham and M. S. Cheung, Proc. Natl. Acad.
Sci. U. S. A., 2013, 110, 20545–20550.
A. M. Slawin, A. E. Goeta and J. A. Howard, Org. Biomol.
Chem., 2004, 2, 732–740.
4 S. J. Teague, Nat. Rev. Drug Discovery, 2003, 2, 527–541.
5 D. O’Hagan, Chem. Soc. Rev., 2008, 37, 308–319.
26 P. Auffinger, F. A. Hays, E. Westhof and P. S. Ho, Proc. Natl.
Acad. Sci. U. S. A., 2004, 101, 16789–16794.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2017