Organic Letters
Letter
As shown in Scheme 3, we briefly assessed the competency
of several trimethylsilyl ketene acetals with varied substitution
azine-N-oxides with an emphasis on “designed” PyBroP
alternatives and stereochemical induction.
ASSOCIATED CONTENT
* Supporting Information
Scheme 3. Addition of Varied Trimethylsilyl Ketene Acetals
to Azine-N-oxides
■
a
S
Experimental procedures and characterization for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to thank Dr. Vincent Mascitti, Dr. Peter
Mikochik, Dr. David W. Piotrowski and Mr. Jason Ramsay of
Pfizer Inc. for their assistance in this research.
a
Unless otherwise noted, all reactions were conducted in 2 dram vials
at 0.20 M concentration with 5 (1.00 equiv), 10 (2.00 equiv), iPr2EtN
b
(3.00 equiv), and PyBroP (1.10 equiv) at 25 °C. Determined by
REFERENCES
■
1
integration of H NMR spectrum.
(1) (a) Johansson, C. C. C; Colacot, T. J. Angew. Chem., Int. Ed.
2010, 49, 676−707. (b) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110,
1082−1146.
(2) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108−
11109.
(3) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119,
12382−12383.
(4) (a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew.
Chem., Int. Ed. 1997, 36, 1740−1742. (b) Satoh, T.; Inoh, J.;
Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71,
2239−2246.
(5) (a) Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7996−8002. (b) Lee, S.; Beare, N. A.; Hartwig, J. F. J. Am. Chem. Soc.
2001, 123, 8410−8411. (c) Jorgensen, M.; Lee, S.; Liu, X.; Wolkowski,
J. P.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 12557−12565.
(d) Hama, T.; Liu, X.; Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc.
2003, 125, 11176−11177. (e) Liu, X.; Hartwig, J. F. J. Am. Chem. Soc.
2004, 126, 5182−5191. (f) Hama, T.; Hartwig, J. F. Org. Lett. 2008,
10, 1545−1548. (g) Hama, T.; Hartwig, J. F. Org. Lett. 2008, 10,
1549−1552. (h) Biscoe, M. R.; Buchwald, S. L. Org. Lett. 2009, 11,
1773−1775. (i) Hama, T.; Ge, S.; Hartwig, J. F. J. Org. Chem. 2013, 78,
8250−8266. (j) Wong, B.; Linghu, X.; Crawford, J. J.; Drobnick, J.;
Lee, W.; Zhang, H. Tetrahedron 2014, 70, 1508−1515.
(6) (a) Shaughnessy, K. H.; Hamann, B. C.; Hartwig, J. F. J. Org.
Chem. 1998, 63, 6546−6553. (b) Cossy, J.; deFilippis, A.; Pardo, D. G.
Org. Lett. 2003, 5, 3037−3039. (c) Hama, T.; Culkin, D. A.; Hartwig, J.
F. J. Am. Chem. Soc. 2006, 128, 4976−4985. (d) Zheng, B.; Jia, T.;
Walsh, P. J. Org. Lett. 2013, 15, 4190−4193.
at the nucleophilic carbon. When R2 and R3 were equal to
hydrogen and pyridine-N-oxide was utilized as a substrate, we
obtained the expected product (3) in 74% yield. Surprisingly,
when trimethylsilyl ketene acetals bearing methyl groups at the
R2 and R3 position were utilized in the same transformation, we
obtained a regioisomeric mixture of products (11a−b and
11c−d), resulting from addition to both the 2- and 4-postion of
pyridine-N-oxide. This loss of selectivity is contrary to the other
examples reported here, as well as to those from our previous
works, and is not fully understood. Nevertheless, these
preliminary results suggest that steric bulk at the nucleophilic
carbon may interfere with the critical charge association15 we
attribute to the usual regioselectivity. In further support of this
hypothesis, when we compared the reactivity of analogous tert-
butyldimethylsilyl ketene acetals (OTBS vs OTMS) in
examples 11a−d, we again obtained a mixture of isomers,
albeit in lower yield. Azine-N-oxide substrates with substitution
at the 4-position proceeded as expected and afforded single
products (11e−f). Lastly, we determined if a silyl ketene acetal
containing a chiral auxiliary might impart some degree of
stereoselectivity if utilized in this transformation. Indeed, as
demonstrated in example 11g, we obtained a 2:1 diastereomeric
ratio of products with an optically pure phenethyloxy-silyl
ketene acetal.
In conclusion, we have presented a novel procedure for the
synthesis of diverse α-(2-azaheteroaryl) acetates, which remains
a challenge by contemporary methods. Our procedure is
expedient, operationally simple, and tolerant of varied substrate
functionality, including reactive bromides. This methodology
should be of particular use in the synthesis of small molecule
chemotherapeutics, where the incorporation of polarity is
needed to control lipophilicity, increase beneficial drug/target
interactions, and optimize drug-like properties. Our laboratory
will continue to investigate the addition of silyl ketene acetals to
(7) (a) Terao, Y.; Fukuoka, T.; Satoh, M.; Miura, M.; Nomura, M.
Tetrahedron Lett. 2002, 43, 101−104. (b) Martin, R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2007, 46, 7236−7239. (c) Vo, G. D.; Hartwig, J.
F. Angew. Chem., Int. Ed. 2008, 47, 2127−2130. (d) Martin, R.;
Buchwald, S. L. Org. Lett. 2008, 10, 4561−4564.
(8) (a) Woodward, R. B.; Kornfeld, E. C. Org. Synth. 1949, 29, 44−
46. (b) Kofron, W. G.; Baclawski, L. M. Org. Synth. 1972, 52, 75−76.
(9) (a) Londregan, A. T.; Jennings, S.; Wei, L. Org. Lett. 2010, 12,
5254−5257. (b) Londregan, A. T.; Jennings, S.; Wei, L. Org. Lett.
2011, 13, 1840−1843.
(10) Bromo-tris-pyrrolidino-phosphonium hexafluorophosphate,
Castro, B.; Coste, J. PCT Int. Appl. WO/90/10009, 1990.
C
dx.doi.org/10.1021/ol501359r | Org. Lett. XXXX, XXX, XXX−XXX