Organic Letters
Letter
D. W. C. Chem. Rev. 2013, 113, 5322. (e) Wencel-Delord, J.; Glorius, F.
Nat. Chem. 2013, 5, 369. (f) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960. (g) Gutekunst, W. R.; Baran, P. S.
Chem. Soc. Rev. 2011, 40, 1976. (h) McMurray, L.; O’Hara, F.; Gaunt,
M. Chem. Soc. Rev. 2011, 40, 1885. (i) Lyons, T. W.; Sanford, M. S.
Chem. Rev. 2010, 110, 1147. (j) Colby, D. A.; Bergman, R. G.; Ellman, J.
A. Chem. Rev. 2010, 110, 624. (k) Ackermann, L.; Vicente, R.; Kapdi, A.
R. Angew. Chem., Int. Ed. 2009, 48, 9792. (l) Chen, X.; Engle, K. M.;
Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
Scheme 4. Proposal Mechanism
(2) For an elegant review, see: (a) Lee, Y.-C.; Kumar, K.; Waldmann,
H. Angew. Chem., Int. Ed. 2018, 57, 5212. For selective examples, see:
(b) Liu, W.; Ren, Z.; Bosse, A. T.; Liao, K.; Goldstein, E. L.; Bacsa, J.;
Musaev, D. G.; Stoltz, B. M.; Davies, H. M. L. J. Am. Chem. Soc. 2018,
140, 12247. (c) Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.;
Musaev, D. G.; Davies, H. M. L. Nat. Chem. 2018, 10, 1048. (d) Mao,
Y.-J.; Lou, S.-J.; Hao, H.-Y.; Xu, D.-Q. Angew. Chem., Int. Ed. 2018, 57,
14085. (e) Song, S.; Lu, P.; Liu, H.; Cai, S.-H.; Feng, C.; Loh, T.-P. Org.
Lett. 2017, 19, 2869. (f) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc.
́
́
2016, 138, 2544. (g) Lu, Q.; Vasquez-Cespedes, S.; Gensch, T.;
Glorius, F. ACS Catal. 2016, 6, 2352.
(3) (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
(b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
(c) Gooβen, L. J.; Gooβen, K.; Rodríguez, N.; Blanchot, M.; Linder, C.;
Zimmermann, B. Pure Appl. Chem. 2008, 80, 1725.
(4) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng, J.; Vora,
H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
(5) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.
(6) Li, Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S. Org. Lett.
2013, 15, 2574.
(7) (a) Gallardo-Donaire, J.; Martin, R. J. Am. Chem. Soc. 2013, 135,
9350. (b) Wang, Y.; Gulevich, A. V.; Gevorgyan, V. Chem. - Eur. J. 2013,
19, 15836.
(8) Dai, J.-J.; Xu, W.-T.; Wu, Y.-D.; Zhang, W.-M.; Gong, Y.; He, X.-
P.; Zhang, X.-Q.; Xu, H.-J. J. Org. Chem. 2015, 80, 911.
(9) Wang, X.; Gallardo-Donaire, J.; Martin, R. Angew. Chem., Int. Ed.
2014, 53, 11084.
(10) (a) Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front.
2018, 5, 749. (b) Yang, Q.; Jia, Z.; Li, L.; Zhang, L.; Luo, S. Org. Chem.
Front. 2018, 5, 237. (c) Ramirez, N. P.; Bosque, I.; Gonzalez-Gomez, J.
C. Org. Lett. 2015, 17, 4550.
(11) Tao, X.-Z.; Dai, J.-J.; Zhou, J.; Xu, J.; Xu, H.-J. Chem. - Eur. J.
2018, 24, 6932.
(12) (a) Pletz, J.; Berg, B.; Breinbauer, R. Synthesis 2016, 48, 1301.
(b) Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed,
A. Bioorg. Med. Chem. 2016, 24, 2361. (c) Wolk, J. L.; Frimer, A. A.
Molecules 2010, 15, 5473. (d) Wiklund, P.; Bergman, J. Curr. Org. Synth.
2006, 3, 379.
ones and carbazoles by palladium-catalyzed intramolecular
chemoselective C(sp2)−H and C(sp3)−H activation of N-
alkyl-N-arylanthranilic acids. The high selectivity is controlled
by simply switching the oxidants. This novel methodology
shows wide substrate scope and good functional group tolerance
and provides the corresponding 1,2-dihydro-(4H)-3,1-benzox-
azin-4-ones and carbazoles in good to high yields.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
1
copies of H and 13C NMR spectra for all compounds
(13) (a) Zhang, E.; Zhang, X.; Wei, W.; Wang, D.; Cai, Y.; Xu, T.; Yan,
AUTHOR INFORMATION
■
́
́
̇
k, A.; Jozwiak, L.;
M.; Zou, Y. RSC Adv. 2015, 5, 5288. (b) Bouzy
Kolendo, A. Yu.; Błazejowski, J. Spectrochim. Acta, Part A 2003, 59, 543.
Corresponding Author
ORCID
̇
(14) (a) Liu, L.; Du, L.; Zhang-Negrerie, D.; Du, Y. RSC Adv. 2015, 5,
29774. (b) Zhang, N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K.
J. Org. Chem. 2014, 79, 10581.
Notes
(15) For selective free carboxylic acid directed C(sp3)−H activation,
see: (a) Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q.
(b) Zhuang, Z.; Yu, C.-B.; Chen, G.; Wu, Q.-F.; Hsiao, Y.; Joe, C. L.;
Qiao, J. X.; Poss, M. A.; Yu, J.-Q. J. Am. Chem. Soc. 2018, 140, 10363.
(c) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. J. Am. Chem. Soc.
2018, 140, 6545.
(16) (a) Baur, A.; Bustin, K. A.; Aguilera, E.; Petersen, J. L.; Hoover, J.
M. Org. Chem. Front. 2017, 4, 519. (b) Rubottom, G. M.; Mott, R. C.;
Juve, H. D., Jr. J. Org. Chem. 1981, 46, 2717.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the National Natural
Science Foundation of China (21172142) and the Science and
Technology Commission of Shanghai Municipality
(18JC1410801).
(17) Chaumontet, M.; Piccardi, R.; Audic, N.; Hitce, J.; Peglion, J.-L.;
Clot, E.; Baudoin, O. J. Am. Chem. Soc. 2008, 130, 15157.
REFERENCES
■
(18) (a) Fromm, A.; van Wullen, C.; Hackenberger, D.; Gooßen, L. J.
̈
(1) For selective reviews, see: (a) Saint-Denis, T. G.; Zhu, R.-Y.; Chen,
G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 747. (b) Hartwig, J. F. J. Am.
Chem. Soc. 2016, 138, 2. (c) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W.
Chem. Rev. 2015, 115, 1622. (d) Prier, C. K.; Rankic, D. A.; MacMillan,
J. Am. Chem. Soc. 2014, 136, 10007. (b) Goossen, L. J.; Rodríguez, N.;
Melzer, B.; Linder, C.; Deng, G.; Levy, L. M. J. Am. Chem. Soc. 2007,
129, 4824.
D
Org. Lett. XXXX, XXX, XXX−XXX