Journal of the American Chemical Society
Communication
(c) Enders, D.; Han, J. Tetrahedron: Asymmetry 2008, 19, 1367.
(d) Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org. Chem.
2009, 74, 9214. (e) Soeta, T.; Tabatake, Y.; Inomata, K.; Ukaji, Y.
Tetrahedron 2012, 68, 894.
Harada, S.; Kang, B.; Oriez, R.; Yamaoka, Y.; Takasu, K.; Yamada, K. J.
Am. Chem. Soc. 2013, 135, 11485. See also ref 8.
(18) Selectivity and yield were not significantly affected by the
following: temperature and concentration variation, addition of
molecular sieves, addition of 1 equiv of H2O, and increased base
loading. Carbonate bases, protic solvents, and use of nitrogen gas in
place of argon each led to a decrease in yield.
(19) Chen, C.; Kao, J.; Salunke, S. B.; Lin, Y. Org. Lett. 2011, 13, 26.
(20) Attempts to subject a mixture of all benzoin compounds with
excess hydrocinnamaldehyde (as formed by 1) resulted in no
consumption of the aldehyde. Presumably some component of the
mixture inhibited catalytic activity. Attempts to purify the mixture using
flash column chromatography prior to use resulted in decomposition
and mass loss.
(4) (a) Hachisu, Y.; Bode, J. W.; Suzuki, K. J. Am. Chem. Soc. 2003, 125,
8432. (b) Enders, D.; Niemeier, O.; Balensiefer, T. Angew. Chem., Int. Ed.
Engl. 2006, 45, 1463. (c) Enders, D.; Niemeier, O.; Raabe, G. Synlett
2006, 2431. (d) Takikawa, H.; Hachisu, Y.; Bode, J. W.; Suzuki, K.
Angew. Chem., Int. Ed. Engl. 2006, 45, 3492. (e) Li, Y.; Feng, Z.; You, S.-L.
Chem. Commun. 2008, 2263. (f) Ema, T.; Oue, Y.; Akihara, K.; Miyazaki,
Y.; Sakai, T. Org. Lett. 2009, 11, 4866. (g) Takada, A.; Hashimoto, Y.;
Takikawa, H.; Hikita, K.; Suzuki, K. Angew. Chem., Int. Ed. 2011, 50,
2297. (h) For a review highlighting the use of NHC-catalyzed
intramolecular cross-benzoin reactions in total synthesis: Izquierdo, J.;
Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012,
51, 11686.
(21) Breslow, R.; Kim, R. Tetrahedron Lett. 1994, 35, 699.
(22) A rate-limiting Breslow intermediate formation involving two
molecules of aldehyde cannot be rigorously excluded based on our data.
(5) Mennen, S. M.; Miller, S. J. J. Org. Chem. 2007, 72, 5260.
(6) Stetter, H.; Dambkes, G. Synthesis 1977, 6, 403.
̈
(7) For recent examples: (a) Piel, I.; Pawalczyk, M. D.; Hirano, K.;
Frolich, R.; Glorius, F. Eur. J. Org. Chem. 2011, 5475. (b) Rose, C. A.;
̈
Gundala, S.; Connon, S. J.; Zeitler, K. Synthesis 2011, 190. (c) O’Toole,
S. E.; Rose, C. A.; Gundala, S.; Zeitler, K.; Connon, S. J. J. Org. Chem.
2011, 76, 347.
(8) (a) Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. W. Org. Lett.
2011, 13, 880. (b) Jin, M. Y.; Kim, S. M.; Hui, M.; Ryu, D. H.; Song, C.
E.; Yang, J. W. Org. Biomol. Chem. 2014, 12, 1547.
(9) (a) Kuhl, N.; Glorius, F. Chem. Commun. 2010, 47, 573. See also
(b) Matsumoto, T.; Ohishi, M.; Inoue, S. J. Org. Chem. 1985, 50, 603.
(10) Mathies, A. K.; Mattson, A. E.; Scheidt, K. A. Synlett 2009, 377.
(11) (a) Enders, D.; Henseler, A. Adv. Synth. Catal. 2009, 351, 1749.
(b) Enders, D.; Grossmann, A.; Fronert, J.; Raabe, G. Chem. Commun.
2010, 46, 6282. See also refs 4a−g.
(12) (a) Rose, C. A.; Gundala, S.; Fagan, C.-L.; Franz, J. F.; Connon, S.
J.; Zeitler, K. Chem. Sci. 2012, 3, 735. (b) Thai, K.; Langdon, S. M.;
Bilodeau, F.; Gravel, M. Org. Lett. 2013, 15, 2214.
(13) Dunkelmann, P.; Kolter-Jung, D.; Nitsche, A.; Demir, A. S.;
̈
Siegert, P.; Lingen, B.; Baumann, M.; Pohl, M.; Muller, M. J. Am. Chem.
̈
Soc. 2002, 124, 12084.
(14) (a) Muller, C. R.; Per
Org. Biomol. Chem. 2013, 11, 2000. For the use of a large excess of
́
ez-San
́
chez, M.; Domínguez de María, P.
̈
̈
̧esȩ noglu, O.; Dunkelmann, P.;
̈
aliphatic aldehyde: (b) Demir, A. S.; S
Muller, M. Org. Lett. 2003, 5, 2047.
̈
(15) For an excellent explanation of this problem, see ref 7b.
(16) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.
(17) For discussions on the significance of the bicyclic backbone:
(a) Knight, R. L.; Leeper, F. J. Tetrahedron Lett. 1997, 38, 3611.
(b) Dvorak, C.; Rawal, V. Tetrahedron Lett. 1998, 39, 2925. (c) Knight,
R. L.; Leeper, F. J. J. Chem. Soc., Perkin Trans. 1 1998, 1891. See also ref
3a. For discussions on the significance of the N-aryl substituent:
(d) Rovis, T. Chem. Lett. 2008, 37, 2. (e) Enders, D.; Han, J.; Henseler,
A. Chem. Commun. 2008, 3989. (f) Read de Alaniz, J.; Rovis, T. Synlett
2009, 1189. (g) Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192.
(h) Schedler, M.; Frohlich, R.; Daniliuc, C.-G.; Glorius, F. Eur. J. Org.
̈
Chem. 2012, 4164. (i) Cohen, D. T.; Eichman, C. C.; Phillips, E. M.;
Zarefsky, E. R.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 7309.
(j) Massey, R. S.; Collett, C. J.; Lindsay, A. G.; Smith, A. D. J. Am. Chem.
Soc. 2012, 134, 20421. (k) Candish, L.; Forsyth, C. M.; Lupton, D. W.
Angew. Chem., Int. Ed. 2013, 52, 9149. (l) Collett, C. J.; Massey, R. S.;
Maguire, O. R.; Batsanov, A. S.; O’Donoghue, A. C.; Smith, A. D. Chem.
Sci. 4, 1514. (m) Zhao, X. D.; Glover, G. S.; Oberg, K. M.; Dalton, D. M.;
Rovis, T. Synlett 2013, 1229. (n) Mahatthananchai, J.; Bode, J. W. Acc.
Chem. Res. 2014, 47, 696. See also refs 3d and 7a. For an example of
backbone conformational control through substitution: (o) DiRocco, D.
A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am. Chem. Soc. 2009, 131,
10872. For reports showing the importance of the counterion: (p) Ma,
Y.; Wei, S.; Wu, J.; Yang, F.; Liu, B.; Lan, J.; Yang, S.; You, J. Adv. Synth.
Catal. 2008, 350, 2645. (q) Kaeobamrung, J.; Mahatthananchai, J.;
Zheng, P.; Bode, J. W. J. Am. Chem. Soc. 2010, 132, 8810. (r) Kuwano, S.;
D
dx.doi.org/10.1021/ja501772m | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX