ACS Medicinal Chemistry Letters
Letter
contrast to several previously reported nonmacrocyclic IAP
antagonists reported by us and others, which were shown to be
susceptible to the MDR phenotype.17,26
REFERENCES
■
(1) Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next
generation. Cell 2011, 144, 646−674.
In summary, a potent dimeric macrocyclic IAP antagonist 11
with improved in vitro and in vivo activities was identified
through systematic optimization of the carboxylic acid and
linker regions of compound 1. Despite its high molecular
weight and large number of lipophilic aromatic rings,
compound 11 demonstrated desirable in vitro pharmacology,
safety, and PK parameters. Compound 11 was found to be
efficacious at a much lower dose compared to compound 1
when evaluated in the A875 xenograft model. Furthermore,
given the large number of tumors that are susceptible to the
MDR phenotype, the intriguing potency of this novel series of
IAP antagonists in MDR-positive cell lines may provide a
distinct advantage for this target class. Further profiling of
compound 11 in additional MDR-positive cell lines both in
vitro and in vivo is ongoing and will be reported in due course.
(2) Fulda, S.; Vucic, D. Targeting IAP proteins for therapeutic
intervention in cancer. Nat. Rev. Drug Discovery 2012, 11, 109−124.
(3) Riedl, S. J.; Renatus, M.; Schwarzenbacher, R.; Zhou, Q.; Sun, C.;
Fesik, S. W.; Liddington, R. C.; Salvesen, G. S. Structural basis for the
inhibition of caspase-3 by XIAP. Cell 2001, 104, 791−800.
(4) Varfolomeev, E.; Blankenship, J. W.; Wayson, S. M.; Federova, A.
V.; Kayagaki, N.; Garg, P.; Zobel, K.; Dynek, J. N.; Elliott, L. O.;
Wallweber, H. J. A.; Flygare, J. A.; Fairbrother, W. J.; Deshayes, K.;
Dixit, V. M.; Vucic, D. IAP antagonists induce autoubiquitination of c-
IAPs,NF-κB activation, and TNFα-dependent apoptosis. Cell 2007,
131, 669−681.
(5) Tamm, I.; Kornblau, S. M.; Segall, H.; Krajewski, S.; Welsh, K.;
Kitada, S.; Scudiero, D. A.; Tudor, G.; Qui, Y. H.; Monks, A.; Andreeff,
M.; Reed, J. C. Expression and prognostic significance of IAP-family
genes in human cancers and myeloid leukemias. Clin. Cancer Res. 2000,
6, 1796−1803.
(6) Liu, Z.; Sun, C.; Olejniczak, E. T.; Meadows, R. P.; Betz, S. F.;
Oost, T.; Herrmann, J.; Wu, J. C.; Fesik, S. W. Structural basis for
binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 2000,
408, 1004−1008.
ASSOCIATED CONTENT
■
S
* Supporting Information
(7) Li, L.; Thomas, R. M.; Suzuki, H.; De Brabander, J. K.; Wang, X.;
Harran, P. G. A small molecule Smac mimic potentiates TRAIL and
TNFα-mediated cell death. Science 2004, 305, 1471−1474.
(8) Oost, T. K.; Sun, C.; Armstrong, R. C.; Al-Assaad, A. S.; Betz, S.
F.; Deckwerth, T. L.; Ding, H.; Elmore, S. W.; Meadows, R. P.;
Olejniczak, E. T. Discovery of potent antagonists of the antiapoptotic
protein XIAP for the treatment of cancer. J. Med. Chem. 2004, 47,
4417−4426.
Experimental procedures for the synthesis of all new analogues
and procedures for IAP binding assays, A875 proliferation
assay, caspase rescue assay, pharmacokinetic experiments, and
in vivo efficacy experiments. The Supporting Information is
(9) Sun, H.; Nikolovska-Coleska, Z.; Yang, C.-Y.; Qian, D.; Lu, J.;
Qiu, S.; Bai, L.; Peng, Y.; Cai, Q.; Wang, S. Design of small-molecule
peptidic and nonpeptidic Smac mimetics. Acc. Chem. Res. 2008, 41,
1264−1277.
AUTHOR INFORMATION
■
Corresponding Author
(10) Flygare, J.; Fairbrother, W. Small-molecule pan-IAP antagonists:
a patent review. Expert Opin. Ther. Pat. 2010, 20, 251−267.
(11) Condon, S. M. The discovery and development of Smac-
mimetics − small-molecule antagonists of the inhibitor of apoptosis
proteins. Annu. Rep. Med. Chem. 2011, 46, 211−226.
(12) Bristol-Myers Squibb refers to cyclic and acyclic compounds
with a molecular weight between 600 and 6000 Da as millamolecules.
Millamolecules, especially macrocyclic millamolecules, are ideal for
pursuing the so-called “undruggable targets” such as complex protein−
protein interactions.
(13) Seigal, B.; Connors, W. H.; Fraley, A.; Borzilleri, R. M.; Carter,
P. H.; Emanuel, S. L.; Fargnoli, J.; Kim, K.; Lei, M.; Naglich, J. G.;
Pokross, M. E.; Posy, S. L.; Shen, H.; Surti, N.; Talbott, R.; Zhang, Y.;
Terrett, N. K. The discovery of macrocyclic XIAP antagonists from a
DNA-programmed chemistry library, and their optimization to give
lead compounds with apoptotic activity in vivo. J. Med. Chem. 2015, 58,
2855−2861.
(14) Marsault, E.; Peterson, M. L. Macrocycles Are Great Cycles:
Applications, Opportunities, and Challenges of Synthetic Macrocycles
in Drug Discovery. J. Med. Chem. 2011, 54, 1961−2004.
(15) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. The
exploration of macrocycles for drug discovery an underexploited
structural class. Nat. Rev. Drug Discovery 2008, 7, 608−624.
(16) Several macrocyclic IAP antagonists have been described in the
literature: Sun, H.; Liu, L.; Lu, J.; Qiu, S.; Yang, C.; Yi, H.; Wang, S.
Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorg.
Med. Chem. Lett. 2010, 20, 3043−3046 and reference 11.
(17) Kim, K. S.; Zhang, L.; Willliams, D.; Perez, H. L.; Stang, E.;
Borzilleri, R. M.; Posy, S.; Lei, M.; Chaudhry, C.; Emanuel, S.; Talbott,
R. Discovery of tetrahydroisoquinoline-based bivalent heterodimeric
IAP antagonists. Bioorg. Med. Chem. Lett. 2014, 24, 5022−5029.
(18) Perez, H. L.; Chaudhry, C.; Emanuel, S. L.; Fargnoli, J.; Gan, J.;
Kim, K. S.; Lei, M.; Naglich, J. G.; Traeger, S. C.; Vuppugalla, R.; Wei,
D. D.; Vite, G. D.; Talbott, R. L.; Borzilleri, R. M. Discovery of potent
Author Contributions
All authors have given approval to the final version of the
manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Caroline Fanslau for generation of XIAP binding data
and Sarah Traeger, Gerry Evelof, and Celia D’Arienzo for
analytical support.
ABBREVIATIONS
■
IAP, inhibitor of apoptosis protein; XIAP, X-linked inhibitor of
apoptosis protein; cIAP, cellular inhibitor of apoptosis protein;
BIR, baculovirus inhibitor of apoptosis repeat; Smac, second
mitrochondria-derived activator of caspases; MDR, multidrug
resistance; CL, clearance; Vss, steady-state volume of
distribution; AUC, area under the curve; EDCI, N-(3-
(dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride;
HOAt, 1-hydroxy-7-azabenzotriazole; NMM, N-methylmor-
pholine; Boc, tert-butyloxycarbonyl; TFA, trifluoroacetic acid,
N-Boc-L-tert-leucine, (S)-2-((tert-butoxycarbonyl)amino)-3,3-
dimethylbutanoic acid; rt, room temperature; Boc-N-methyl-
L-alanine, (S)-2-((tert-butoxycarbonyl)(methyl)amino)-
propanoic acid; DMF, dimethylformamide; DCM, dichloro-
methane; tBuOH, tert-butanol; THF, tetrahydrofuran; DCE,
̀
dichloroethane; hERG, human ether-a-go-go-Related Gene;
PXR-TA, pregnane X receptor-transactivation; TGI, tumor
growth inhibition; PK, pharmacokinetic
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX