ACS Combinatorial Science
Research Article
Chemistry and mechanism of action. Chem. Rev. 1974, 74, 625−652.
(e) Sato, M.; Nakazawa, T.; Tsunematsu; Hotta, K.; Watanabe, K.
Echinomycin biosynthesis. Curr. Op. Chem. Biol. 2013, 17, 537−545.
(5) (a) Welsch, M. E.; Snyder, S. A.; Strockwell, B. R. Privileged
scaffolds for library design and drug discovery. Curr. Op. Chem. Biol.
2010, 14, 347−361. (b) Constantino, L.; Barolocco, D. Privileged
structures as leads in medicinal chemistry. Curr. Med. Chem. 2006, 13,
65−85.
(m, 5H), 7.59−7.42 (m, 3H), 7.43−7.18 (m, 5H), 4.66 (d, J =
6.0 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ (ppm): 164.8,
153.7, 144.9, 142.5, 139.2, 138.5, 137.9, 131.6, 130.4, 129.3,
129.1, 129.1, 128.8, 128.7, 128.1, 127.9, 127.6, 43.7. HRMS
(CI) m/z calcd. for C22H18N3O [M + H]+: 340.1450; found
340.1449.
ASSOCIATED CONTENT
* Supporting Information
■
(6) (a) Thomas, K. R. J.; Marappan, V.; Jian, T. L.; Chang-Hao, C.;
Yu-ai, T. Chromophore-labeled quinoxaline derivatives as efficient
electroluminescent materials. Chem. Mater. 2005, 17, 1860−1866.
(b) Dailey, S.; Feast, J. W.; Peace, R. J.; Saga, R. C.; Till, S.; Wood, E.
L. Synthesis and device characterisation of side-chain polymer electron
transport materials for organic semiconductor applications. J. Mater.
Chem. 2001, 11, 2238−2243. (c) Toshima, K.; Takano, R.; Ozawa, T.;
Matsumura, S. Molecular design and evaluation of quinoxaline-
carbohydrate hybrids as novel and efficient photo-induced GG-
selective DNA cleaving agents. Chem. Commun. 2002, 212−213.
(d) Patra, A. K.; Dhar, S.; Nethaji, M.; Chakravarty, A. R. Metal-
assisted red light-induced DNA cleavage by ternary L-methionine
copper(II) complexes of planar heterocyclic bases. Dalton Trans. 2005,
896−902. (e) Sonawane, N. D.; Rangnekar, D. W. Synthesis and
reactions of 2-amino-6-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-4-
phenylpyridine-3-carbonitrile. J. Heterocycl. Chem. 2002, 39, 303−308.
(7) (a) Porter, A. E. A. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, U.K., 1984; pp
157−197. (b) Woo, G. H.; Snyder, J. K.; Wan, Z. K. Chapter 6.2Six-
membered ring systems: Diazines and benzo derivatives. Prog.
Heterocycl. Chem. 2002, 14, 279−309. (c) Mamedov, V. A.;
Zhukova, N. A. Chapter 2Progress in quinoxaline synthesis (Part
1). Prog. Heterocycl. Chem. 2012, 24, 55−88. (d) Mamedov, V. A.;
Zhukova, N. A. Chapter 1Progress in quinoxaline synthesis (Part 2).
Prog. Heterocycl. Chem. 2013, 25, 1−45.
(8) (a) Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Morales, G.
A.; Salvino, J. M.; Zhang, W. Comprehensive survey of chemical
libraries for drug discovery and chemical biology: 2006. J. Comb. Chem.
2007, 9, 855−902. (b) Dolle, R. E.; Le Bourdonnec, B.; Goodman, A.
J.; Morales, G. A.; Thomas, C. J.; Zhang, W. Comprehensive survey of
chemical libraries for drug discovery and chemical biology: 2007. J.
Comb. Chem. 2008, 10, 753−802. (c) Dolle, R. E.; Le Bourdonnec, B.;
Goodman, A. J.; Morales, G. A.; Thomas, C. J.; Zhang, W.
Comprehensive survey of chemical libraries for drug discovery and
chemical biology: 2008. J. Comb. Chem. 2009, 11, 739−790. (d) Dolle,
R. E.; Le Bourdonnec, B.; Worm, K.; Morales, G. A.; Thomas, C. J.;
Zhang, W. Comprehensive survey of chemical libraries for drug
discovery and chemical biology: 2009. J. Comb. Chem. 2010, 12, 765−
806.
S
Detailed experimental procedures, complete description of the
spectroscopic and analytical data of all compounds described,
1
including copies of H NMR, 13C NMR, and HRMS. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
*Tel.: ++34-881815732. Fax.: ++34-881815702. E-mail: e.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was financially supported by the Galician Govern-
ment (Spain, Project 09CSA016234PR). J.A. thanks FUN-
■
DAYACUCHO (Venezuela) and Diputacio
(Galicia, Spain) for research grants.
́
n da Coruna
̃
REFERENCES
■
(1) Kleemann, A., Engel, J., Kutscher, B., Reichert, D. Pharmaceutical
Substances: Synthesis, Patents, Applications, 5th ed.; Thieme: Stuttgart,
Germany, 2008.
(2) (a) Vicente, E.; Lima, L. M.; Bongard, E.; Charnaud, S.; Villar, R.;
Solano, B.; Burguete, A.; Perez-Silanes, S.; Aldana, I.; Vivas, L.; Monge,
́
A. Synthesis and structure−activity relationship of 3-phenylquinoxaline
1,4-di-N-oxide derivatives as antimalarial agents. Eur. J. Med. Chem.
2008, 43, 1903−1910. (b) Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A.
Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as
anti-Mycobacterium tuberculosis agents. J. Med. Chem. 2005, 48, 2019−
2025. (c) Patel, M.; Mc Hugh, R. J.; Cordova, B. C.; Klabe, R. M.;
Erickson-Vitanen, S.; Trainor, G. L.; Rodgers, J. D. Synthesis and
evaluation of quinoxalinones as HIV-1 reverse transcriptase inhibitors.
Bioorg. Med. Chem. Lett. 2000, 10, 1729−1731. (d) Seitz, L. E.; Suling,
W. J.; Reynolds, R. C. Synthesis and antimycobacterial activity of
pyrazine and quinoxaline derivatives. J. Med. Chem. 2002, 45, 5604−
5606. (e) Gao, H.; Yamasaki, E. F.; Chan, K. K.; Shen, L. L.; Snapka,
R. M. DNA sequence specificity for topoisomerase II poisoning by the
quinoxaline anticancer drugs XK469 and CQS. Mol. Pharmacol. 2003,
63, 1382−1388.
(9) Brown, D. J. Quinoxalines. In The Chemistry of Heterocyclic
Compounds; Taylor, E. C., Wipf, P., Eds.; John Wiley & Sons:
Hoboken, NJ, 2004; pp 1−510.
(10) Hinsberg, O. Ueber chinoxaline. Ber. Dtsch. Chem. Ges. 1884, 17,
318−323.
(11) Saifina, D. F.; Mamedov, V. A. New and modified classical
methods for the synthesis of quinoxalines. Russ. Chem. Rev. 2010, 79,
351−370.
(3) (a) Knowles, C. O. Chemistry and toxicology of quinoxaline,
organotin, organofluorine, and formamidine acaricides. Environ. Health
Perspect. 1976, 14, 93−102. (b) Selby, T. P.; Denes, L. R.; Kilama, J.
L.; Smith, B. K. Aryl-substituted quinoxalines and related heteroarenes
as novel herbicides prepared via palladium-catalyzed cross-coupling
methods. ACS Symp. Ser. 1995, 584, 171−185. (c) Sakata, G.; Makino,
K.; Kurasawa, Y. Recent Progress in the quinoline chemistry. Synthesis
and biological activity. Heterocycles 1988, 27, 2481−2515.
(4) (a) Dell, A.; Williams, D. H.; Morris, H. R.; Smith, G. A.; Feeney,
J.; Roberts, G. C. K. Structure revision of the antibiotic echinomycin. J.
Am. Chem. Soc. 1975, 97, 2497−2502. (b) Saito, I.; Matsuura, T.
Chemical studies on riboflavin and related compounds. I. Oxidation of
quinoxaline-2,3-diols as a possible model for the biological
decomposition of riboflavin. Biochemistry 1967, 6, 3602−3608.
(c) Yan, B. Y.; Xia, Y. G.; Wang, Q. H.; Dou, D. Q.; Kuang, H. X.
Two new amide alkaloids from the flower of Datura metel L.
Fitoterapia 2010, 81, 1003−1005. (d) Hollstein, U. Actinomycin.
(12) (a) Haddadin, M. J.; Issidorides, C. H. Application of
benzofurazan oxide to the synthesis of heteroaromatic N-oxides.
Heterocycles 1976, 4, 767−816. (b) Haddadin, M. J.; Issidorides, C. H.
Enamines with isobenzofuroxan: a novel synthesis of quinoxaline-di-n-
oxides. Tetrahedron Lett. 1965, 6, 3253−3256. (c) Issidorides, C. H.;
Haddadin, M. J. Benzofurazan oxide. II. Reactions with enolate anions.
J. Org. Chem. 1966, 31, 4067−4068.
(13) (a) Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.;
Wiley-VCH: Weinheim, Germany, 2005. (b) Domling, A. Recent
̈
developments in isocyanide based multicomponent reactions in
applied chemistry. Chem. Rev. 2006, 106, 17−89. (c) Armstrong, R.
W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A.
Multiple-component condensation strategies for combinatorial library
synthesis. Acc. Chem. Res. 1996, 29, 123−131. Kalinski, C.; Umkehrer,
H
dx.doi.org/10.1021/co500036n | ACS Comb. Sci. XXXX, XXX, XXX−XXX