Communication
ChemComm
Table 5 Substrate scope of the 18F-trifluoromethylation reaction
yield and deprotected with TFA in a second step to obtain the
prospective 5-HT receptor radiotracer 17c.
In this report, we have shown that CuI mediated 18F-trifluoro-
methylation reactions are highly efficient in the presence of a simple
combination of DIPEA, CuBr and iodoarenes. We extended
this methodology to three examples of a single-pot synthesis of
candidate radioligands for PET imaging (Scheme 2). The resulting
[18F]trifluoromethyl arenes were obtained in sufficient yields by
using an operationally convenient protocol, suitable for straightfor-
ward automation. This direct and rapid conversion of iodoarenes is
tolerant to diverse functional groups and consequently provides
convenient access to a variety of drug molecules containing the CF3-
group. Given the high prevalence of the CF3-group and its prominent
role in drug development, paired with the availability of 18F at most
PET centres, we expect this novel methodology to be widely adapted
for the development of PET radiotracers in particular from known
and well characterised drug molecules.
Substrate
R
X
Product
RCYa,b (%)
1a
2a
3a
4a
5a
6a
7a
8a
4-Cyano
4-t-Butyl
4-t-Butyl
4-t-Butyl
4-Methoxycarbonyl
4-Nitro
4-Pyridinyl
3-Methoxycarbonyl
4-Phenyl
4-Carboxamido
4-Benzyloxy
4-Hydroxy
3,5-Dimethyl
2,6-Dimethyl
I
I
Br
Cl
I
I
I
I
I
I
I
I
I
[
[
[
[
[
[
[
[
[
[
[
[
[
[
18F]1b
18F]2b
18F]2b
18F]2b
18F]5b
18F]6b
18F]7b
18F]8b
18F]9b
18F]10b
18F]11b
18F]12b
18F]13b
18F]14b
93 ꢂ 3
69 ꢂ 8
1
1
86 ꢂ 7
89 ꢂ 4
58 ꢂ 17
86 ꢂ 8
84 ꢂ 2
44 ꢂ 14
85 ꢂ 6
12 ꢂ 1
63 ꢂ 6
75 ꢂ 6
9a
10a
11a
12a
13a
14a
I
a
Screening conditions: 100 MBq scale, CuBr (58 mmol), CHF2I
(169 mmol), KHCO3 (13 mM), crypt-222 (35 mmol), aryl halide (41 mmol),
Notes and references
b
DIPEA (59 mmol), 145 1C, 10 min, DMF (300 mL). RCY values are
mean ꢂ S.D.
1 L. Cai, S. Lu and V. W. Pike, Eur. J. Org. Chem., 2008, 2853–2873.
2 (a) P. W. Miller, N. J. Long, R. Vilar and A. D. Gee, Angew. Chem., Int.
Ed., 2008, 47, 8998–9033; (b) P. J. H. Scott, Angew. Chem., Int. Ed.,
2009, 48, 6001–6004.
`
3 G. J. Meyer, S. L. Waters, H. H. Coenen, A. Luxen, B. Maziere and
¨
B. Långstrom, Eur. J. Nucl. Med., 1995, 22, 1420–1432.
4 (a) D. A. Nagib and D. W. C. MacMillan, Nature, 2011, 480, 224–228;
(b) A. Deb, S. Manna, A. Modak, T. Patra, S. Maity and D. Maiti, Angew.
Chem., Int. Ed., 2013, 52, 9747–9750; (c) S. Mizuta, K. M. Engle, S. Verhoog,
O. Galicia-Lopez, M. O’Duill, M. Medebielle, K. Wheelhouse, G. Rassias,
A. Thompson and V. Gouverneur, Org. Lett., 2013, 15, 1250–1253;
(d) T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473, 470–477;
(e) S. Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana, M. O’Duill,
K. Wheelhouse, G. Rassias, M. Medebielle and V. Gouverneur, J. Am. Chem.
Soc., 2013, 135, 2505–2508.
5 (a) M. Huiban, M. Tredwell, S. Mizuta, Z. Wan, X. Zhang, T. L. Collier,
V. Gouverneur and J. Passchier, Nat. Chem., 2013, 5, 941–944; (b) L. Zhu,
K. Ploessl and H. F. Kung, Science, 2013, 342, 429–430; (c) S. Mizuta,
I. Stenhagen, M. O’Duill, J. Wolstenhulme, A. Kirjavainen, S. Forsback,
M. Tredwell, G. Sandford, P. Moore, M. Huiban, S. Luthra, J. Passchier,
O. Solin and V. Gouverneur, Org. Lett., 2013, 15, 2648–2651;
(d) M. Tredwell and V. Gouverneur, Angew. Chem., Int. Ed., 2012, 51,
11426–11437; (e) P. J. Riss, V. Ferrari, L. Brichard, P. Burke, R. Smith and
F. I. Aigbirhio, Org. Biomol. Chem., 2012, 10, 6980–6986; ( f ) P. J. Riss and
F. I. Aigbirhio, Chem. Commun., 2011, 47, 11873–11875; (g) M. R.
Kilbourn, M. R. Pavia and V. E. Gregor, Int. J. Radiat. Appl. Instrum., Part
´
A, 1990, 41, 823–828; (h) O. Josse, D. Labar, B. Georges, V. Gregoire and
Scheme 2 Direct radiosynthesis of [18F]trifluoromethyl arenes.
J. Marchand-Brynaert, Bioorg. Med. Chem., 2001, 9, 665–675; (i) W. R.
Dolbier Jr, A.-R. Li, C. J. Koch, C.-Y. Shiue and A. V. Kachur, Appl. Radiat.
Isot., 2001, 54, 73–80.
6 D. van der Born, J. D. M. Herscheid, R. V. A. Orru and D. J. Vugts,
Chem. Commun., 2013, 49, 4018–4020.
efficiently within only 10 min, we investigated the feasibility of
synthesising prospective radiotracer candidates bearing mole-
cular structures common for small molecule drugs (Scheme 2).
Treatment of precursor 15a with 18F under our standard
conditions afforded the potential subtype selective cannabinoid
receptor agonist [18F]15b in 85% RCY. Likewise, we investigated
the direct radiosynthesis of trifluorothymine 16b from the
corresponding iodide precursor 16a in order to provide this
compound for our ongoing cancer imaging efforts in rodent
´
7 (a) A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adan,
´
P. Novak and V. V. Grushin, J. Org. Chem., 2013, 78, 11126–11146;
(b) O. A. Tomashenko and V. V. Grushin, Chem. Rev., 2011, 111, 4475;
(c) E. A. Symons and M. J. Clermont, J. Am. Chem. Soc., 1981, 103,
3127–3130; (d) M. Halpern, Phase-Transfer Catalysis, Ullmann’s
Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002;
(e) E. V. Dehmlow and S. S. Dehmlow, Phase Transfer Catalysis,
VCH, Weinheim, 3rd edn, 1993; ( f ) C. M. Starks, C. L. Liotta and
M. E. Halpern, Phase-Transfer Catalysis, Chapman & Hall, New York,
1994; (g) W. Kirmse, Carbene Chemistry, Academic Press, Inc. LTD,
New York-London, 2nd edn, 1971, vol. 1.
models of peripheral tumours.9 [18F]16b was obtained in a 8 P. J. Riss, S. Lu, S. Telu, F. I. Aigbirhio and V. W. Pike, Angew. Chem.,
Int. Ed., 2012, 51, 2698–2702.
9 K. Virdee, P. Cumming, D. Caprioli, B. Jupp, A. Rominger,
F. I. Aigbirhio, T. D. Fryer, P. J. Riss and J. W. Dalley, Neurosci.
Biobehav. Rev., 2012, 36, 1188–1216.
radiochemical yield of 73%. In an extension of our concept
the BOC-protected piperazine 17a was converted into the
18F-trifluoromethylated BOC-protected piperazine 17b in 85%
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6056--6059 | 6059