Page 11 of 14
Journal of the American Chemical Society
10160. (k) Harms, R. G.; Markovits, I. I. E.; Drees, M.; Herrmann,
research will focus on in-depth mechanistic understand-
1
2
3
4
5
6
7
8
W. A.; Cokoja, M.; Kühn, F. E. ChemSusChem, 2014, 7, 429. (l) F.
Tran, C. S. Lance, P. C. J. Kamer, T. Lebl, N. J. Westwood, Green.
Chem. 2015, 17, 244. (m) vom Stein, T.; den Hartog, T.; Buendia,
J.; Stoychev, S.; Mottweiler, J.; Bolm, C.; Klankermayer, J.; Leit-
ner, W. Angew. Chem. Int. Ed. 2015, 54, 5859.
ing of lignin conversion pathways and the precise role of
reaction intermediates in order to maximize the amount
of monomeric products.
ASSOCIATED CONTENT
7 (a) Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W.;
Science 2010, 330, 1222. (b) He, J.; Zhao, Ch.; Lercher, J. A.; J. Am.
Chem. Soc. 2012, 134, 20768. (c) Wang, X.; Rinaldi, R. Angew.
Chem. Int. Ed. 2013, 52, 11499. (d) Song, Q.; Wang, F.; Cai, J.;
Wang, Y.; Zhang, J.; Yu, W.; Xu, J.; Energy Environ. Sci., 2013, 6,
994. (e) Parsell, T. H.; Owen, B. C.; Klein, I.; Jarell, T. M.; Mar-
cum, C. L.; Haupert, L. J.; Amundson, L. M.; Kenttämaa, H. I.;
Ribeiro, F.; Miller, J. T.; Abu-Omar, M. M., Chem. Sci. 2013, 4,
806. (f) Zhang, J.; Teo, J.; Chen, X.; Asakura, H.; Tanaka, T.;
Teremura, K.; Yan, N. ACS Catal. 2014, 4 , 1574. (g) M. V. Galkin,
J. S. M. Samec, ChemSusChem, 2014, 7, 2154-2158. (h) Jongerius,
A. L.; Bruinincx, P. C. A.; Weckhuysen B. M.; Green Chem. 2013,
15, 3049. (i) Bouxin, F. P.; McVeigh, A.; Tran, F.; Westwood, N. J.;
Jarvis, M. C.; Jackson, S. D. Green Chem. 2015, 17, 1235.
Supporting Information: The supplied supporting infor-
mation contains details on the materials and methods (SI
section 1), synthesis of the model compounds (SI section 2),
procedures and additional data on the cleavage of β-O-4
model compounds (SI section 3) as well as on the depolymer-
ization of walnut dioxosolv lignin (SI section 4) and isolation
of acetals from beech ethanosolv lignin (SI section 5). “This
material is available free of charge via the Internet at
http://pubs.acs.org.”
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
The authors gratefully acknowledge financial support from
the European Commission (SuBiCat Initial Training Net-
work, Call FP7-PEOPLE-2013-ITN, grant no. 607044) as well
as T. Yan, A. Narani and B. Oldenburger (Rijkuniversiteit
Groningen) for their contribution to the synthesis of model
compounds and development of lignin isolation procedures.
8
(a) Kobayashi, H.; Ohta, H.; Fukuoka, A. Catal. Sci. Techol.
2012, 2, 869. (b) Azadi, P.; Inderwildi, O. R.; Farnood, R.; King,
D. A. Renew. Sustainable Energy Rev. 2013, 21, 506. (c) Deuss, P.
J.; Barta, K. Coord. Chem. Rev. doi:10.1016/j.ccr.2015.02.004.
9
(a) Partenheimer, W. Adv. Synth. Catal. 2009, 351, 456. (b)
Chan, J. M. W.; Bauer, S.; Sorek, H.; Sreekumar, S.; Wang, K.;
Toste, F. D. ACS Catal. 2013, 3, 1369. (c) Wu, A.; Lauzon, J. M.;
James, B. R. Catal. Lett. 2015, 145, 511.
ABBREVIATIONS
10
CCR2, CC chemokine receptor 2; CCL2, CC chemokine ligand
2; CCR5, CC chemokine receptor 5; TLC, thin layer chroma-
tography.
(a) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S. Nature 2014,
515, 249. (b) Bruijnincx, P. C. A.; Weckhuysen, B. M. Nat. Chem.
2014, 6, 1035.
11
(a) Barta, K.; Warner, G. R.; Beach, E. S.; Anastas, P. T. Green
Chem. 2014, 16, 191. (b) Lancefield, C. S.; Ojo, O. S.; Tran, F.;
REFERENCES
1
Westwood, N. J. Angew. Chem. Int. Ed. 2015, 54, 258.
(a) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuy-
12
Lundquist, G., Acidolysis. In: Methods in Lignin Chemistry,
sen, B. M. Chem. Rev. 2010, 110, 3552. (b) Ragauskas, A. J.; Beck-
ham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.;
Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M.; Langan, P.;
Naskar, A. K.; Saddler, J. N.; Tschaplinski, T. J.; Tuskan, G. A.;
Wyman, C. E. Science 2014, 344, 709. (c) Holladay, J. E.; White, J.
F.; Bozell, J. J.; Johnson D. in Top value-Added Chemicals from
Biomass Vol. II-Results of Screening for Potential Candidates from
Biorefinery Lignin, U.S. Department of Energy (DOE) by PNNL,
Richland, WA, US, 2007, PNNL-16983
Lin, S. Y.; Dence, C.W. (eds), Springer-Verlag, Heidelberg, 1992,
pp.287-300.
13
(a) Sannigrahi, P.; Pu, Y.; Ragauskas, A. Curr. Opin. Environ.
Sustain. 2010, 2, 383. (b) Patton-Mallory, M.; Skog, K. E.; Dale, V.
H. Integrated Forest Biorefineries: Product-Based Economic
Factors. In Integrated Forest Biorefineries: Challenges and Oppor-
tunities; Christopher, L., (Eds.), RSC Green Chemistry Series; The
Royal Society of Chemistry, Cambridge, 2013, pp 80-97.
14 Adler, E. Wood Sci. Technol. 1977, 11, 169.
2
(a) Xu, C.; Arancon, R. A. D.; Labidi, J.; Luque, R. Chem. Soc.
15
(a) Pyle, J. J.; Brickman, L.; Hibbert, H. J. Am. Chem. Soc. 1939,
Rev. 2014, 43, 7485. (b) Boerjan, W.; Ralph, J.; Baucher, M. Annu.
Rev. Plant Biol. 2003, 54, 519.
61, 2189. (b) Brickman, L.; Pyle, J. J.; Hawkins W. L.; Hibbert, H. J.
Am. Chem. Soc. 1940, 62, 986. (c) Kulka, M.; Hibbert, H. J. Am.
Chem. Soc. 1943, 65, 1180.
3
(a) Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Polia-
koff, M. Science 2012, 337, 695. (b) Vennestrøm, P. N. R.; Os-
mundsen, C. M.; Christensen, C. H.; Taarning, E. Angew. Chem.
Int. Ed. 2011, 50, 10502. (c) Dutta, S.; Wu, K. C.-W.; Saha, B.
Catal. Sci. Technol. 2014, 4, 3785.
16 Lundquist, K. Appl. Polym. Symp. 1976, 28, 1393.
17
(a) Steeves, W. H.; Hibbert H. J. Am. Chem. Soc. 1939, 61, 2194.
(b) Lundquist, K. Acta Chem. Scand. 1970, 24, 889.
18 Mitchell, L.; Hibbert, H. J. Am. Chem. Soc. 1944, 66, 602.
4 Zaheer M.; Kempe, R. ACS Catal. 2015, 5, 1675.
19
(a) Sturgeon, M. R.; Kim, S.; Lawrence, K.; Paton, R. S.; Chme-
5 Barta, K.; Ford, P. C. Acc. Chem. Res. 2014, 47, 1503.
6
ly, S. C.; Nimlos, M.; Foust, T. D.; Beckham, G. T. ACS Sustaina-
ble Chem. Eng. 2014, 2, 472. (b) Yokohama, T. J. Wood Chem.
Technol. 2015, 35, 27. (c) Ito, H.; Imai, T.; Lundquist, K.; Yoko-
yama, T.; Matsumoto, Y. J. Wood Chem. Technol. 2011, 31, 172. (d)
Imai, T.; Yokoyama, T.; Matsumoto, Y. J. Wood Sci. 2011, 57, 219.
20 Yokoyama, T.; Matsumoto, Y. J. Wood Chem. Technol. 2010, 30,
269.
(a) Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Sut-
ton, A. D.; Thorn, D. L. J. Am. Chem. Soc. 2009, 131, 428. (b)
Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2010, 132, 12554. (c) Son, S.; Toste, F. D. Angew.
Chem., Int. Ed. 2010, 49, 3791. (d) Sergeev. A. G.; Hartwig, J. F.
Science 2011, 332, 439. (e) Atesin, A. C.; Ray, N. A.; Stair, P. C.;
Marks, T. J. J. Am. Chem. Soc. 2012, 134, 14682. (f) Fedorov, A.;
Toutov, A. A.; Swisher, N. A.; Grubbs, R. H. Chem. Sci. 2013, 4,
1640. (g) Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S. J.
Am. Chem. Soc. 2013, 135, 6415. (h) Feghali, E.; Cantat, T. Chem.
Commun. 2014, 50, 862. (i) Nguyen, J. D.; Matsuura, B. S.; Ste-
phenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 1218. (j) Haibach, M.
C.; Lease, N.; Goldman, A. S. Angew. Chem. Int. Ed. 2014, 53,
21 Voitl, T.; von Rohr, P. R. ChemSusChem 2008, 1, 763.
22
Roberts, V. M.; Stein, V.; Reiner, T.; Lemonidou, A.; Li, X.;
Lercher, J. A. Chem. Eur. J. 2011, 17, 5939.
23 Boerjan, W.; Ralph, J.; Baucher, M. Annu. Rev. Plant Biol. 2003,
54, 519.
24
(a) Chang, Y.-A. Chinese J. Chem. 2007, 25, 989. (b) Watson,
W. H.; Chen, J. S.; Zabel, V. J. Org. Chem. 1981, 46, 2916.
ACS Paragon Plus Environment