C
X. Ren et al.
Cluster
Synlett
(4) For selected reports, see: (a) Chen, J.; Chen, J.; Lang, F.; Zhang,
X.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. J. Am. Chem. Soc. 2010, 132,
4552. (b) Korenaga, T.; Hayashi, K.; Akaki, Y.; Maenishi, R.;
Sakai, T. Org. Lett. 2011, 13, 2022. (c) Holder, J. C.; Marziale, A.
N.; Gatti, M.; Mao, B.; Stoltz, B. M. Chem. Eur. J. 2013, 19, 74.
(d) He, Q.; So, C. M.; Bian, Z.; Hayashi, T.; Wang, J. Chem. Asian J.
2015, 10, 540.
(5) (a) Valla, C.; Baeza, A.; Menges, F.; Pfaltz, A. Synlett 2008, 3167.
(b) Zhao, D.-B.; Beiring, B.; Glorius, F. Angew. Chem. Int. Ed.
2013, 52, 8454.
O
O
O
O
O
O
tBu
O
nPr
Et
O
Me
3a
3b
91% (17% ee)
3c
99% (11% ee)
3e
98% (21% ee)
Me
95% (32% ee)
O
O
O
O
O
O
Ph
3-FC6H4
Me
(6) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.
(7) Oesteich, M.; Hermeke, J.; Mohr, J. Chem. Soc. Rev. 2015, 44,
2202.
3g
99% (17% ee)
3h
3j
99% (11% ee)
O
93% (17% ee)
(8) For selected reports, see: (a) Blackwell, J. M.; Foster, K. L.; Beck,
V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887. (b) Blackwell, J.
M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. E. Org. Lett. 2000, 2,
3921. (c) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc.
2010, 132, 10660. (d) Simonneau, A.; Oestreich, M. Angew.
Chem. Int. Ed. 2013, 52, 11905. (e) Pérez, M.; Hounjet, L. J.;
Caputo, C. B.; Dobrovetsky, R.; Stephan, D. W. J. Am. Chem. Soc.
2013, 135, 18308. (f) Adduci, L. L.; McLaughlin, M. P.; Bender, T.
A.; Becker, J. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2014, 53,
1646. (g) Houghton, A. Y.; Hurmalainen, J.; Mansikamäki, A.;
Piers, W. E.; Tuononen, H. M. Nat. Chem. 2014, 6, 983.
(h) Gandhamsetty, N.; Joung, S.; Park, S.-W.; Park, S.; Chang, S.
J. Am. Chem. Soc. 2014, 136, 16780. (i) Granhamsetty, N.; Park,
J.; Jeong, J.; Park, S.-W.; Park, S.; Chang, S. Angew. Chem. Int. Ed.
2015, 54, 6832. (j) Chen, J.; Chen, E. Y.-X. Angew. Chem. Int. Ed.
2015, 54, 6842. (k) Mehta, M.; Holthausen, M. H.; Mallov, I.;
Pérez, M.; Qu, Z.-W.; Grimme, S.; Stephan, D. W. Angew. Chem.
Int. Ed. 2015, 54, 8250. (l) Simonneau, A.; Oestreich, M. Nat.
Chem. 2015, 7, 816.
O
3-OMeC6H4
3k
94% (17% ee)
Figure 1 Asymmetric hydrosilylation of chromones and flavones
can ensure a high reactivity. Significantly, an attempt for
the asymmetric hydrosilylation of chromones and flavones
using chiral diyne derived catalyst gave chromanones and
flavanones in high yields with up to 32% ee. Further efforts
on searching for more effective chiral catalysts for this
transformation are under way in our laboratory.
(9) Feng, X.; Du, H. Tetrahedron Lett. 2014, 55, 6959.
Funding Information
(10) (a) Rendler, S.; Oestreich, M. Angew. Chem. Int. Ed. 2008, 47,
5997. (b) Hog, D. T.; Oestreich, M. Eur. J. Org. Chem. 2009, 5047.
(c) Mewald, M.; Oestreich, M. Chem. Eur. J. 2012, 18, 14079.
(d) Hermeke, J.; Mewald, M.; Oestreich, M. J. Am. Chem. Soc.
2013, 135, 17537. (e) Chen, D.; Leich, V.; Pan, F.; Klankermayer,
J. Chem. Eur. J. 2012, 18, 5184. (f) Süsse, L.; Hermeke, J.;
Oestreich, M. J. Am. Chem. Soc. 2016, 138, 6940.
We are grateful for the generous financial support by the National
Natural Science Foundation of China (21222207, 21572231,
21521002).
N
oaitn
a
l
Natuarl
Secince
F
o
u
n
d
oaitn
of
C
h
n
i
a
2(
1
2
2
2
2
0
7)
2(
1
5
7
2
2
3
1)
2(
1
5
2
1
0
0
2)
Supporting Information
(11) Greb, L.; Oña-Burgos, P.; Kubas, A.; Falk, F. C.; Breher, F.; Fink, K.;
Paradies, J. Dalton Trans. 2012, 41, 9056.
Supporting information for this article is available online at
(12) Kim, Y.; Chang, S. Angew. Chem. Int. Ed. 2016, 55, 218.
(13) (a) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810. (b) Wei, S.;
Du, H. J. Am. Chem. Soc. 2014, 136, 12261. (c) Ren, X.; Li, G.; Wei,
S.; Du, H. Org. Lett. 2015, 17, 990. (d) Zhang, Z.; Du, H. Org. Lett.
2015, 17, 2816. (e) Zhang, Z.; Du, H. Org. Lett. 2015, 17, 6266.
(14) (a) Zhu, X.; Du, H. Org. Biomol. Chem. 2015, 13, 1013. (b) Ren, X.;
Du, H. J. Am. Chem. Soc. 2016, 138, 810.
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) (a) Chemistry of Heterocyclic Compounds: Chromens, Chroma-
nones, and Chromones;
3
V1o.
l
Ellis, G.-P., Ed.; John Wiley and Sons:
(15) Massey, A. G.; Park, A. J. J. Organometallic Chem. 1964, 2, 245.
(16) (a) Parks, D. J.; von H. Spence, R. E.; Piers, W. E. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 809. (b) Parks, D. J.; Piers, W. E.; Yap, G. P.
A. Organometallics 1998, 17, 5492.
New York, 1977. (b) Flavonoids: Chemistry, Biochemistry and
Applications; Andersen, Ø. M., Ed.; CRC, Taylor and Francis: Boca
Raton, 1986. (c) Flavonoids: Biosynthesis, Biological Effects and
Dietary Sources; Keller, R. B., Ed.; Nova Science: Hauppauge,
2009.
(17) General Procedure for Hydrosilylations
To a tube, HB(C6F5)2 (0.0035 g, 0.01 mmol), 2,3,4,5,6-pentafluo-
rostyrene (0.0019 g, 0.01 mmol), and dry toluene (0.10 mL)
were added in a nitrogen atmosphere glovebox. The resulting
mixture was stirred for 5 min at r.t. to afford a catalyst solution
(0.10 M). To a sealing tube (15 mL), catalyst solution (0.0004
mmol, 4 μL, 0.1 M), PhMe2SiH (0.0649 g, 0.48 mmol), chromone
or flavone 1(0.0644 g, 0.4 mmol), and dry toluene (0.8 mL) were
added. The reaction mixture was stirred at 80 °C for 15 h, and
(2) (a) Kulkarni, P. R. Org. Chem.: Indian J. 2014, 10, 417. (b) Meng,
L.; Wang, J. Synlett 2016, 27, 656.
(3) For selected reports, see: (a) Biddle, M. M.; Lin, M.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 3830. (b) Wang, L.-J.; Liu, X.-H.;
Dong, Z.-H.; Fu, X.; Feng, X.-M. Angew. Chem. Int. Ed. 2008, 47,
8670. (c) Wang, H.-F.; Cui, H.-F.; Chai, Z.; Li, P.; Zheng, C.-W.;
Yang, Y.-Q.; Zhao, G. Chem. Eur. J. 2009, 15, 13299.
(d) Hintermann, L.; Dittmer, C. Eur. J. Org. Chem. 2012, 5573.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D