Job/Unit: I40007
/KAP1
Date: 02-04-14 16:12:26
Pages: 8
FULL PAPER
niques by using SHELXTL-97 within WINGX.[24] The hydrogen
atoms of the aromatic rings were included in the structure factor
calculation at idealized positions by using a riding model. Aniso-
tropic thermal parameters were used to refine all non-hydrogen
atoms except for some of the nitrogen and carbon atoms. Structural
data in CIF format is available as Supporting Information. CCDC-
956631 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[4]
[5]
K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater.
2010, 22, 572.
a) Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 1995,
269, 1086; b) K. M. Maness, R. H. Terrill, T. J. Meyer, R. W.
Murray, R. M. Wightman, J. Am. Chem. Soc. 1996, 118, 10609;
c) J. K. Lee, D. S. Yoo, E. S. Handy, M. F. Rubner, Appl. Phys.
Lett. 1996, 69, 1686; d) J. Slinker, D. Bernards, P. L. Houston,
H. D. Abruna, S. Bernhard, G. G. Malliaras, Chem. Commun.
2003, 2392; e) A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurov-
ich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2005,
44, 8723; f) F. De Angelis, S. Fantacci, N. Evans, C. Klein,
S. M. Zakeeruddin, J.-E. Moser, K. Kalyanasundaram, H. J.
Bolink, M. Grätzel, M. K. Nazeeruddin, Inorg. Chem. 2007,
46, 5989; g) F. L. Zhang, L. Duan, J. Qiao, G. F. Dong, L. D.
Wang, Y. Qiu, Org. Electron. 2012, 13, 2442.
Reviews: a) R. D. Costa, E. Orti, H. J. Bolink, F. Monti, G.
Accorsi, N. Armaroli, Angew. Chem. Int. Ed. 2012, 51, 8178;
Angew. Chem. 2012, 124, 8300; b) T. Hu, L. Duan, Y. Qiu,
J. Mater. Chem. 2012, 22, 4206; c) S. Ladouceur, E. Zysman-
Colman, Eur. J. Inorg. Chem. 2013, 2985.
a) G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara, A. J. Bard,
J. Am. Chem. Soc. 2003, 125, 6272; b) J. D. Slinker, J.-S. Kim,
S. Flores-Torres, J. H. Delcamp, H. D. Abruna, R. H. Friend,
G. G. Malliaras, J. Mater. Chem. 2007, 17, 76; c) L. J. Soltz-
berg, J. Slinker, S. Flores-Torres, D. Bernards, G. G. Malliaras,
H. D. Abruna, J. S. Kim, R. H. Friend, M. D. Kaplan, V. Gold-
berg, J. Am. Chem. Soc. 2006, 128, 7761.
Theoretical Calculations: The ground and excited electronic states
of the complexes were investigated by performing DFT and TD-
DFT calculations at the B3LYP level.[25] The 6-31G* basis sets were
employed to optimize the C, H, N atoms, and the LANL2DZ basis
sets were employed for the Ir atom. An effective core potential
(ECP) replaces the inner core electrons of iridium to leave the outer
core (5s)2(5p)6 electrons and the (5d)6 valence electrons of the IrIII
ion. The geometry of the metal-centered triplet (3MC) was fully
optimized and calculated at the spin-unrestricted UB3LYP level
with a spin multiplicity of three. All calculations reported here were
performed with the Gaussian 09 software package.[26]
[6]
[7]
Device Preparation and Characterization: PEDOT:PSS is poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (CLEVIOSTM
P
VP Al 4083 aqueous dispersion, 1.3–1.7% solid content Heraeus);
solvents were obtained from Aldrich. ITO-coated glass substrates
(20 Ω/sq) were cleaned and treated with oxygen plasma before use.
The PEDOT:PSS layer was spin-coated onto the ITO substrate and
baked at 100 °C for 30 min to yield a film with a thickness of ca.
100 nm. After cooling to room temperature, the solutions of 1–3
and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophos-
phate (BMIMPF6) in CH2Cl2 were spin-coated onto the substrate,
and then the layer with a thickness of ca 90 nm was baked at 80 °C
for 2 h. The film was transferred into a metal evaporating chamber
in which an aluminum cathode (120 nm) was evaporated under low
pressure (Ͻ5ϫ10–4 mbar). The electroluminescence (EL) spectra
were obtained with a Photo Research PR650 spectrophotometer
under ambient conditions by applying a constant voltage with a
Keithley 2400 source meter.
[8]
a) H. J. Bolink, E. Coronado, R. D. Costa, E. Ortí, M. Sessolo,
S. Graber, K. Doyle, M. Neuburger, C. E. Housecroft, E. C.
Constable, Adv. Mater. 2008, 20, 3910; b) R. D. Costa, E. Ortí,
H. J. Bolink, S. Graber, C. E. Housecroft, M. Neuburger, S.
Schaffner, E. C. Constable, Chem. Commun. 2009, 2029; c)
R. D. Costa, E. Ortí, H. J. Bolink, S. Graber, S. Schaffner, M.
Neuburger, C. E. Housecroft, E. C. Constable, Adv. Funct. Ma-
ter. 2009, 19, 3456; d) R. D. Costa, E. Ortí, H. J. Bolink, S.
Graber, C. E. Housecroft, E. C. Constable, Adv. Funct. Mater.
2010, 20, 1511; e) R. D. Costa, E. Ortí, H. J. Bolink, S. Graber,
C. E. Housecroft, E. C. Constable, J. Am. Chem. Soc. 2010,
132, 5978; f) R. D. Costa, E. Ortí, H. J. Bolink, S. Graber, C. E.
Housecroft, E. C. Constable, Chem. Commun. 2011, 47, 3207;
g) A. M. Bünzli, H. J. Bolink, E. C. Constable, C. E. House-
croft, M. Neuburger, E. Ortí, A. Pertegás, J. A. Zampese, Eur.
J. Inorg. Chem. 2012, 3780; h) R. D. Costa, E. Ortí, D. Tordera,
A. Pertegás, H. J. Bolink, S. Graber, C. E. Housecroft, L.
Sachno, M. Neuburger, E. C. Constable, Adv. Energy Mater.
2011, 1, 282.
Supporting Information (see footnote on the first page of this arti-
cle): 1H NMR spectra of 1 and 2; cyclic voltammograms of 1–3;
theoretical calculations of 1–3; emission spectra of 1–3 in solution.
[9]
L. He, L. Duan, J. Qiao, D. Zhang, L. Wang, Y. Qiu, Chem.
Commun. 2011, 47, 6467.
[10]
[11]
[12]
[13]
G.-G. Shan, H.-B. Li, D.-X. Zhu, Z.-M. Su, Y. Liao, J. Mater.
Chem. 2012, 22, 12736.
L. Sun, A. Galan, S. Ladouceur, J. D. Slinker, E. Zysman-Col-
man, J. Mater. Chem. 2011, 21, 18083.
A. J. Wilkinson, H. Puschmann, J. A. K. Howard, C. E. Foster,
J. A. G. Williams, Inorg. Chem. 2006, 45, 8685.
a) S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am.
Chem. Soc. 1984, 106, 6647; b) G. G. Shan, D. X. Zhu, H. B.
Li, P. Li, Z. Su, Y. Liao, Dalton Trans. 2011, 40, 2947; c) L.
He, J. Qiao, L. Duan, G. Dong, D. Zhang, L. Wang, Y. Qiu,
Adv. Funct. Mater. 2009, 19, 2950.
H. T. Cao, G. G. Shan, B. Zhang, P. Li, S. L. Sun, Z. M. Su, J.
Mol. Struct. 2012, 1029.
a) N. Francesco, L. D. Massimo, C. Alessandra, B. Anna, P.
Fausto, C. Sebastiano, Organometallics 2004, 23, 5856; b) G. G.
Shan, H. B. Li, H. T. Cao, D. X. Zhu, P. Li, Z. M. Su, Y. Liao,
J. Organomet. Chem. 2012, 713, 20.
a) N. Tian, D. Lenkeit, S. Pelz, L. H. Fischer, D. Escudero, R.
Schiewek, D. Klink, O. J. Schmitz, L. González, M. Schäfer-
ling, E. Holder, Eur. J. Inorg. Chem. 2010, 4875; b) C. S. Chin,
M. S. Eum, S. Y. Kim, C. Kim, S. K. Kang, Eur. J. Inorg. Chem.
2007, 372; c) N. M. Shavaleev, F. Monti, R. D. Costa, R. Scop-
Acknowledgments
The authors gratefully acknowledge financial support from the
National Natural Science Foundation of China (NSFC) (grant
numbers 51203017, 20971020, 20903020, 21273030, 21131001, and
21303012), the 973 Program (2009CB623605), the Science and
Technology Development Planning of Jilin Province (grant num-
bers 20100540, 201101008, and 20130522167JH), and the Funda-
mental Research Funds for the Central Universities (grant number
12QNJJ012). R. J. thanks the Royal Thai Government for a schol-
arship (grant number MRG5480005).
[14]
[15]
[1] a) V. W.-W. Yam, K. M.-C. Wong, Chem. Commun. 2011, 47,
11579; b) J. D. Routledge, A. J. Hallett, J. A. Platts, P. N. Hor-
ton, S. J. Coles, S. J. A. Pope, Eur. J. Inorg. Chem. 2012, 4065.
[2] H. Yersin (Ed.), Highly Efficient OLEDs with Phosphorescent
Materials, Wiley-VCH, Weinheim, Germany, 2008.
[3] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 2007,
107, 1233.
[16]
Eur. J. Inorg. Chem. 0000, 0–0
6
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim