55 Chambon and G. de Murcia, Proceedings of the National Academy of
Sciences, 1997, 94, 7303; (b) C. Szabo, B. Zingarelli, M. O'Connor and A. L.
SALzMAN, Proceedings of the National Academy of Sciences, 1996, 93,
1753.
(IC50 = 0.231 µМ). Replacement of methyl group with bulkier
alkyl, such as ethyl derivative 33b and i-propyl product 33c,
displayed a 3-fold more potent compared to 33a, and equipotent
to 17a. A further improvement in activity was achieved with
N,N-dimethylpiperidin-4-amine derivative 33d (IC50 = 0.029 µМ)
as the most potent compound., presumably due to a beneficial
interaction of the amine with the adenosine binding site of
PARP-1. Arylated piperidine 33e displayed a drop in PARP-1
potency (IC50 = 0.133 µМ). Aliphatic derivatives 33f, 33h
10 showed moderate activity while 33g containing morpholine as
basic nitrogen displayed nanomolar potency (IC50 = 0.083 µМ).
From the results above, some compounds with IC50 values lower
than 0.100 µM were further evaluated for their inhibition on cell
proliferation (as shown in Table 4). Unfortunately, these
15 compounds showed no proliferation inhibition to the BRCA2-
deficient V-C8 cells (CC50 > 10 µМ). However, these compounds
were further evaluated in human breast cancer MDA-MB-436
cells carrying natural BRCA1 mutation. Both 17h and 33b
showed moderate potency against the BRCA1-deficient MDA-
20 MB-436 cells, whereas 33c and 33d were inactive in both lines.
3 F. Dantzer, G. de la Rubia, J. Ménissier-de Murcia, Z. Hostomsky, G. de
60 Murcia and V. Schreiber, Biochemistry-us., 2000, 39, 7559.
5
4 T. Helleday, E. Petermann, C. Lundin, B. Hodgson and R. A. Sharma,
Nature Reviews Cancer, 2008, 8, 193.
5 (a) C. J. Lord and A. Ashworth, Current Opinion in Pharmacology, 2008,
8, 363; (b) K. Ratnam and J. A. Low, Clin. Cancer Res., 2007, 13, 1383.
65 6 K. A. Menear, C. Adcock, R. Boulter, X.-l. Cockcroft, L. Copsey, A.
Cranston, K. J. Dillon, J. Drzewiecki, S. Garman, S. Gomez, H. Javaid, F.
Kerrigan, C. Knights, A. Lau, V. M. Loh, I. T. W. Matthews, S. Moore, M. J.
O’Connor, G. C. M. Smith and N. M. B. Martin, J. Med. Chem., 2008, 51,
6581.
70 7 Y. Shen, F. L. Rehman, Y. Feng, J. Boshuizen, I. Bajrami, R. Elliott, B.
Wang, C. J. Lord, L. E. Post and A. Ashworth, Clin. Cancer Res., 2013, 19,
5003.
8 P. Jones, S. Altamura, J. Boueres, F. Ferrigno, M. Fonsi, C. Giomini, S.
Lamartina, E. Monteagudo, J. M. Ontoria, M. V. Orsale, M. C. Palumbi, S.
75 Pesci, G. Roscilli, R. Scarpelli, C. Schultz-Fademrecht, C. Toniatti and M.
Rowley, J. Med. Chem., 2009, 52, 7170.
9 S. S. Canan Koch, L. H. Thoresen, J. G. Tikhe, K. A. Maegley, R. J.
Almassy, J. Li, X.-H. Yu, S. E. Zook, R. A. Kumpf, C. Zhang, T. J. Boritzki,
R. N. Mansour, K. E. Zhang, A. Ekker, C. R. Calabrese, N. J. Curtin, S. Kyle,
80 H. D. Thomas, L.-Z. Wang, A. H. Calvert, B. T. Golding, R. J. Griffin, D. R.
Newell, S. E. Webber and Z. Hostomsky, J. Med. Chem., 2002, 45, 4961.
10 M. Banasik and K. Ueda, Mol. Cell Biochem., 1994, 138, 185.
11 (a) N. Ye, C.-H. Chen, T. Chen, Z. Song, J.-X. He, X.-J. Huan, S.-S. Song,
Q. Liu, Y. Chen, J. Ding, Y. Xu, Z.-H. Miao and A. Zhang, J. Med. Chem.,
85 2013, 56, 2885; (b) F. Orvieto, D. Branca, C. Giomini, P. Jones, U. Koch, J.
M. Ontoria, M. C. Palumbi, M. Rowley, C. Toniatti and E. Muraglia, Bioorg.
Med. Chem. Lett., 2009, 19, 4196; (c) J.-H. Li, L. Serdyuk, D. V. Ferraris, G.
Xiao, K. L. Tays, P. W. Kletzly, W. Li, S. Lautar, J. Zhang and V. J. Kalish,
Bioorg. Med. Chem. Lett., 2001, 11, 1687.
Table 4. Cell Proliferation Inhibition of Compounds on
BRCA1 and BRCA2 Deficient Cellsa,b
90 12 D. V. Ferraris, J. Med. Chem., 2010, 53, 4561.
13 Analytical data for selected final compound 17a: 1H NMR (300 MHz,
CD3OD) δ: 8.46 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 8.1 Hz, 1H), 7.84 - 7.78 (m,
1H), 7.54 - 7.48 (m, 1H), 6.33 (s, 1H), 4.12(s, 3H), 3.72 (t, J = 4.5 Hz, 4H),
3.01 (s, 1H), 2.90 (t, J = 4.5 Hz, 4H); 13C NMR (125 MHz, DMSO-d6) δ
95 161.77, 160.91, 132.90, 130.68, 130.04, 129.38, 126.44, 125.12, 124.22,
120.71, 116.12, 96.30, 46.10, 35.71. LC-MS [ESI]: m/z 311.2 [M+H]+. 17b:
1H NMR (300 MHz, CD3OD) δ: 8.46 (d, J = 8.1 Hz, 1H), 8.30 (d, J = 8.7 Hz,
1H), 7.84 - 7.78 (m, 1H), 7.54 - 7.48 (m, 1H), 6.34 (s, 1H), 4.12 (s, 3H), 3.77
(m, 4H), 2.51 (m, 4H), 2.35 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ
100 161.31, 160.45, 132.43, 130.00, 129.55, 128.92, 125.95, 124.70, 123.80,
120.27, 115.80, 96.05, 54.58, 45.56, 35.27. LC-MS [ESI]: m/z 325.2 [M+H]+.
18a: 1H NMR (300 MHz, DMSO-d6) δ: 11.59 (s, 1H), 8.36 (d, J = 8.2 Hz,
1H), 8.21 (d, J = 8.2 Hz, 1H), 7.88 - 7.81 (m, 1H), 7.59 - 7.52 (m, 1H), 4.01
(s, 3H), 3.85 - 3.80 (m, 1H), 3.72 - 3.65 (m, 3H), 3.53 - 3.48 (m, 2H), 3.08 -
105 3.02 (m, 2H), 2.73 (s, 3H), 2.15 - 2.00 (m, 2H); 13C NMR (125 MHz, DMSO-
d6) δ 161.78, 161.31, 133.21, 129.56, 129.43, 125.76, 125.71, 125.42, 124.36,
123.89, 120.98, 115.41, 57.61, 56.45, 55.72, 47.85, 45.39, 36.92, 25.91. LC-
MS [ESI]: m/z, 317.1 [M+H]+, 319.1 [M+3H]+. 18b: white solid 1H NMR
(300 MHz, CD3OD) δ: 8.46 (d, J = 8.1 Hz, 1H), 8.32 - 8.29 (m, 1H), 7.88 -
110 7.81 (m, 1H), 7.59 - 7.52 (m, 1H), 4.12 (s, 3H), 4.00-3.95 (m, 1H), 3.80-3.74
(m, 1H), 3.60 - 3.40 (m, 6H), 3.00 (s, 3H), 2.92-2.90 (m, 2H). 13C NMR (125
MHz, DMSO-d6) δ 161.78, 161.31, 134.21, 130.56, 129.43, 125.76, 125.71,
125.42, 124.36, 123.89, 120.98, 115.41, 56.91, 56.05, 55.22, 46.85, 44.99,
36.52, 24.91. LC-MS [ESI]: m/z, 373.2 [M+H]+, 375.2 [M+3H]+.
a
Cytotoxic effect (CC50) means the concentration required to
25 reduce cell proliferation and growth by 50%. Values were
calculated by Logit method from the results with six
concentrations each (standard deviations were within 25% of the
mean values).
b The assays were performed as described in Ref. 11a
30
In summary, we reported the synthesis and biological
evaluation of novel isoquinolinone-based tricycles as PARP-1
inhibitors. Preliminary SAR study of isoquinolinone-based
tricycles containing pyrrole ring identified submicromolar
inhibitor 17a (IC50 = 44 nМ). Enlarging the ring system was not
35 tolerated. Further structural modification lead to a novel class of
thieno[3,2-c]isoquinolin-5(4H)-one scaffold, which provided
nanomolar PARP-1 inhibiors. Compound 33b, 33c, 33d and 33g
displayed IC50 values of 79, 86, 29 and 83 nM, respectively.
Although these compounds showed lower potency against the
40 BRCA2-deficient V-C8 cells and BRCA1-deficient MDA-MB-
436 cells than AZD-2281, they provided a clue to design novel
PARP1 inhibitors.
1
115 14 Analytical data for selected final compound 27a: H NMR (300 MHz,
CDCl3) δ:8.01 (dd, J = 6.3, 1.9Hz, 1H), 7.59 - 7.51 (m, 1H), 7.46 - 7.39 (m,
2H), 7.18 (t, J = 6.4Hz, 1H, CONH), 6.25 (s, 1H), 4.00 - 3.72 (m, 4H), 3.79 (s,
3H), 3.60 - 3.54 (m, 1H, CONH-CH2), 3.42 - 3.36 (m, 1H, CONH-CH2), 2.48
(m, 4H), 2.36 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 162.69, 160.78, 134.26,
120 134.20, 131.51, 130.53, 128.40, 127.43, 127.40, 127.31, 123.30, 109.33,
55.15, 45.94, 37.83, 34.89, 29.70. LC-MS [ESI]: m/z, 325.2 [M+H]+. 27b: 1H
NMR (300 MHz, CDCl3) δ: 8.00 (d, J = 8.0 Hz, 1H), 7.59 - 7.50 (m, 1H),
7.41 (dd, J = 11.6, 4.4 Hz, 2H), 7.29 (t, J = 6.4 Hz, 1H, CONH), 6.25 (s, 1H),
4.60-4.52 (m, 2H), 3.94 - 3.88 (m, 2H), 3.78 (s, 3H), 3.04 - 2.90 (m, 2H), 2.60
125 - 2.54 (m, 1H), 2.39 (s, 6H), 1.52 - 1.35 (m, 4H); 13C NMR (125 MHz, CDCl3)
δ 162.69, 160.78, 134.26, 134.20, 131.51, 130.53, 128.40, 127.43, 127.40,
127.31, 123.30, 109.33, 71.72, 42.80, 42.10, 34.90, 29.71, 27.40. LC-MS
[ESI]: m/z, 353.2 [M+H]+.
Acknowledgments
This work was supported by National Science & Technology
45 Major Project “Key New Drug Creation and Manufacturing
Program” 2012ZX09301001-001, 2012ZX09103101-071 and the
National Natural Science Foundation of China (21072205 and
81025020) and SIMM1203ZZ-0103.
References and notes
15 Analytical data for selected final compound 33b: 1H NMR (300 MHz,
130 CDCl3) δ: 11.41 (s, 1H), 8.49 (d, J = 7.5 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.54
(ddd, J = 8.2, 6.2, 2.1 Hz, 1H), 3.77 - 3.63 (m, 4H), 2.49 (s, 3H), 2.57 – 2.48
(m,4H), 2.46 (q, J = 7.2 Hz, 2H), 1.11 (t, J = 7.2 Hz, 3H); 13C NMR (125
MHz, DMSO-d6) δ 163.26, 162.38, 137.51, 133.85, 132.87, 130.07, 128.70,
50 1 (a) S.-W. Yu, H. Wang, M. F. Poitras, C. Coombs, W. J. Bowers, H. J.
Federoff, G. G. Poirier, T. M. Dawson and V. L. Dawson, Science, 2002, 297,
259; (b) E. M. Horváth and C. Szabó, Drug News Perspect., 2007, 20, 171.
2 (a) J. M. de Murcia, C. Niedergang, C. Trucco, M. Ricoul, B. Dutrillaux, M.
Mark, F. J. Oliver, M. Masson, A. Dierich, M. LeMeur, C. Walztinger, P.
5