ChemComm
Communication
(k) Y. Wei, L. Yao, B. Zhang, W. He and S. Zhang, Tetrahedron, 2011,
67, 8552; (l) L. Yao, Y. Wei, P. Wang, W. He and S. Zhang, Tetra-
hedron, 2012, 68, 9119; (m) D.-D. Qin, W.-H. Lai, D. Hu, Z. Chen,
A.-A. Wu, Y.-P. Ruan, Z.-H. Zhou and H.-B. Chen, Chem. – Eur. J., 2012,
18, 10515; (n) K. Xu, G. Lai, Z. Zha, S. Pan, H. Chen and Z. Wang,
Chem. – Eur. J., 2012, 18, 12357; (o) A. Das, R. I. Kureshy, K. J. Prathap,
M. K. Choudhary, G. V. S. Rao, N. H. Khan, S. H. R. Abdi and
H. C. Bajaj, Appl. Catal., A, 2013, 459, 97; (p) T. Deng and C. Cai,
chair-shaped transition state, thus obviating repulsions between
the nitronate-oxygen and the pyrrolidine N-methyl group.15 It
might be possible that this arrangement receives some further
stabilisation and rigidness by an intramolecular hydrogen bridge
between the nitronate oxygen and the NH-proton of the chiral
ligand. Thus, the steric and electronic properties of the diamine
ligand apparently create close to perfect preconditions for the
experimentally observed, almost exclusive re-face attack of the
nitronate on the aldehyde carbonyl group.
´
J. Fluorine Chem., 2013, 156, 183; (q) R. Cwiek, P. Niedziejko and
Z. Kału˙za, J. Org. Chem., 2014, 79, 1222.
6 Selected recent examples of enantioselective Cu-catalysed Henry
´
reactions: (a) G. Blay, V. Hernandez-Olmos and J. R. Pedro, Org.
In summary, the cis-5-phenyl substituted 2-aminomethyl-
pyrrolidine 3, which is accessible in just a few steps from methyl
Boc-L-pyroglutamate (4), was successfully utilized as the chiral
ligand in CuBr2- and CuCl2-catalysed Henry reactions. Excellent
isolated yields (490%) and superb enantioselectivities (98.5–99.6% ee)
were obtained with a wide variety of aromatic, heteroaromatic,
vinylic and aliphatic aldehydes (36 examples). Further studies
are ongoing.16
Lett., 2010, 12, 3058; (b) T. Arai, Y. Taneda and Y. Endo, Chem.
Commun., 2010, 46, 7936; (c) L. Cheng, J. Dong, J. You, G. Gao and
J. Lan, Chem. – Eur. J., 2010, 16, 6761; (d) A. Chougnet, G. Zhang,
¨
¨
K. Liu, D. Haussinger, A. Kagi, T. Allmendinger and W.-D. Woggon,
Adv. Synth. Catal., 2011, 353, 1797; (e) M. W. Leighty, B. Shen and
J. N. Johnston, J. Am. Chem. Soc., 2012, 134, 15233; ( f ) J. D. White
and S. Shaw, Org. Lett., 2012, 14, 6270; (g) Q. Dai, N. K. Rana and
J. C.-G. Zhao, Org. Lett., 2013, 15, 2922; (h) D.-D. Qin, W. Yu,
J.-D. Zhou, Y.-C. Zhang, Y.-P. Ruan, Z.-H. Zhou and H.-B. Chen,
Chem. – Eur. J., 2013, 19, 16541.
7 Selected recent examples: (a) D. Uraguchi, S. Nakamura and T. Ooi,
Angew. Chem., Int. Ed., 2010, 49, 7562; (b) K. Kanagaraj, P. Suresh
and K. Pitchumani, Org. Lett., 2010, 12, 4070; (c) Q. Dai, H. Huang
and J. C.-G. Zhao, J. Org. Chem., 2013, 78, 4153; (d) A. Quintavalla,
M. Lombardo, S. P. Sanap and C. Trombini, Adv. Synth. Catal., 2013,
355, 938; (e) S. Kitagaki, T. Ueda and C. Mukai, Chem. Commun.,
2013, 49, 4030; ( f ) M. T. Corbett and J. S. Johnson, Angew. Chem.,
Int. Ed., 2014, 53, 255.
8 M. Gruber-Khadjawi, T. Purkarthofer, W. Skranc and H. Griengl,
Adv. Synth. Catal., 2007, 349, 1445.
9 (a) M. Breuning, D. Hein, M. Steiner, V. H. Gessner and C. Strohmann,
Chem. – Eur. J., 2009, 15, 12764; (b) M. Breuning, M. Steiner, C. Mehler,
A. Paasche and D. Hein, J. Org. Chem., 2009, 74, 1407; (c) M. Breuning
and D. Hein, Eur. J. Org. Chem., 2013, 7575.
Financial support of the German research foundation (DFG)
is gratefully acknowledged.
Notes and references
1 Reviews: (a) F. A. Luzzio, Tetrahedron, 2001, 57, 915; (b) The Nitro
Group in Organic Synthesis, ed. N. Ono, Wiley-VCH, New York, 2001.
2 Reviews: (a) J. Boruwa, N. Gogoi, P. P. Saikia and N. C. Barua,
Tetrahedron: Asymmetry, 2006, 17, 3315; (b) C. Palomo, M. Oiarbide
and A. Laso, Eur. J. Org. Chem., 2007, 2561; (c) Y. Alvarez-Casao,
E. Marques-Lopez and R. P. Herrera, Symmetry, 2011, 3, 220; (d) G. Blay,
´
V. Hernandez-Olmos and J. R. Pedro, Synlett, 2011, 1195; (e) G. Chelucci,
Coord. Chem. Rev., 2013, 257, 1887; ( f ) N. Ananthi and S. Velmathi,
Indian J. Chem., Sect. B, 2013, 52, 87.
10 D. A. Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw and
C. W. Downey, J. Am. Chem. Soc., 2003, 125, 12692.
3 Selected examples: (a) H. Sasai, T. Suzuki, S. Arai, T. Arai and
M. Shibasaki, J. Am. Chem. Soc., 1992, 114, 4418; (b) T. Nitabaru,
A. Nojiri, M. Kobayashi, N. Kumagai and M. Shibasaki, J. Am. Chem.
Soc., 2009, 131, 13860; (c) T. Nitabaru, N. Kumagai and M. Shibasaki,
Angew. Chem., Int. Ed., 2012, 51, 1644; (d) D. Sureshkumar, K. Hashimoto,
N. Kumagai and M. Shibasaki, J. Org. Chem., 2013, 78, 11494.
4 Selected examples (except Cu-catalysis): (a) B. M. Trost and
V. S. C. Yeh, Angew. Chem., Int. Ed., 2002, 41, 861; (b) C. Palomo,
M. Oiarbide and A. Laso, Angew. Chem., Int. Ed., 2005, 44, 3881;
(c) J. Park, K. Lang, K. A. Abboud and S. Hong, J. Am. Chem. Soc.,
2008, 130, 16484; (d) S. Liu and C. Wolf, Org. Lett., 2008, 10, 1831;
(e) R. Kowalczyk, P. Kwiatkowski, J. Skarˇzewski and J. Jurczak, J. Org.
Chem., 2009, 74, 753; ( f ) K. Lang, J. Park and S. Hong, Angew. Chem.,
Int. Ed., 2012, 51, 1620.
5 Cu-catalysed Henry reactions of nitromethane giving 99% ee with at
least one aldehyde: (a) M. Bandini, F. Piccinelli, S. Tommasi,
A. Umani-Ronchi and C. Ventrici, Chem. Commun., 2007, 616;
(b) T. Arai, M. Watanabe and A. Yanagisawa, Org. Lett., 2007,
9, 3595; (c) G. Zhang, E. Yashima and W.-D. Woggon, Adv. Synth.
Catal., 2009, 351, 1255; (d) W. Jin, X. Li, Y. Huang, F. Wu and
B. Wan, Chem. – Eur. J., 2010, 16, 8259; (e) G. Lai, F. Guo, Y. Zheng,
Y. Fang, H. Song, K. Xu, S. Wang, Z. Zha and Z. Wang, Chem. – Eur. J.,
2011, 17, 1114; ( f ) A. T. Herrmann, S. R. Martinez and A. Zakarian,
Org. Lett., 2011, 13, 3636; (g) B. V. Subba Reddy and J. George,
Tetrahedron: Asymmetry, 2011, 22, 1169; (h) Y. Zhou, J. Dong,
F. Zhang and Y. Gong, J. Org. Chem., 2011, 76, 588; (i) W. Jin, X. Li
and B. Wan, J. Org. Chem., 2011, 76, 484; ( j) R. I. Kureshy, A. Das,
N. H. Khan, S. H. R. Abdi and H. C. Bajaj, ACS Catal., 2011, 1, 1529;
11 Enantioselective, Cu-catalysed Henry reactions using proline-
derived ligands: (a) B. V. Subba Reddy, S. Madhusudana Reddy,
S. Manisha and C. Madan, Tetrahedron: Asymmetry, 2011, 22, 530;
(b) D. Lu, Y. Zhou, Y. Li, S. Yan and Y. Gong, J. Org. Chem., 2011,
76, 8869; (c) B. Ni and J. He, Tetrahedron Lett., 2013, 54, 462;
(d) Y. Zhou, Y. Zhu, S. Yan and Y. Gong, Angew. Chem., Int. Ed.,
2013, 52, 10265; (e) H. Yuan, J. Hu and Y. Gong, Tetrahedron:
Asymmetry, 2013, 24, 699; ( f ) H. A. Sema, G. Bez and S. Karmakar,
Appl. Organomet. Chem., 2014, 28, 290; (g) Ref. 5e, h and n.
12 Details about the diamine screening and the optimization of the
reactions conditions as well as further mechanistic investigations
will be reported elsewhere.
13 Synthesis of related compounds: (a) M.-C. Fournie-Zaluski, P. Coric,
V. Thery, W. Gonzalez, H. Meudal, S. Turcaud, J.-B. Michel and
B. P. Roques, J. Med. Chem., 1996, 39, 2594; (b) A. Momotake,
H. Togo and M. Yokoyama, J. Chem. Soc., Perkin Trans. 1, 1999,
1193; (c) A. C. Rudolph, R. Machauer and S. F. Martin, Tetrahedron
Lett., 2004, 45, 4895.
14 A similar effect on the ee was not observed with aromatic aldehydes.
15 A boat-type transition state cannot fully be excluded, but seems less
likely.
16 Initial studies on Henry reactions with other nitroalkanes revealed
acceptable to good diastereoselectivities and excellent enantio-
selectivities in the major syn-diastereomer. The reaction of benzalde-
hyde (6a) with nitropropane, for example, afforded the corresponding
ß-nitro alcohol in 99% yield with a syn/anti ratio of 79: 21 and 98% ee
in the major diastereomer.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6623--6625 | 6625