Page 9 of 11
Journal of the American Chemical Society
141, 1593–1598. (b) Ning, Y.; Ji, Q.; Liao, P.; Anderson, E. A.; Bi, X.
20190701012GH), and the Fundamental Research Funds for
Silver-Catalyzed Stereoselective Aminosulfonylation of Alkynes.
Angew. Chem. Int. Ed. 2017, 56, 13805–13808. (c) Tang, J.; Sivaguru, P.;
Ning, Y.; Zanoni, G.; Bi, X. Silver-Catalyzed Tandem C≡C Bond
Hydroazidation/Radical Addition/Cyclization of Biphenyl Acetylene:
One-Pot Synthesis of 6-Methyl Sulfonylated Phenanthridines. Org.
Lett. 2017, 19, 4026–4029. (d) Ning, Y.; Zhao, X.-F.; Wu, Y.-B.; Bi, X.
Radical Enamination of Vinyl Azides: Direct Synthesis of N-
Unprotected Enamines. Org. Lett. 2017, 19, 6240–6243. (e) Ning, Y.;
Wu, N.; Yu, H.; Liao, P.; Li, X.; Bi, X. Silver-Catalyzed Tandem
Hydroazidation/Alkyne–Azide Cycloaddition of Diynes with TMS-
N3: An Easy Access to 1,5-Fused 1,2,3-Triazole Frameworks. Org. Lett.
2015, 17, 2198–2201. (f) Thirupathi, N.; Wei, F.; Tung, C.-H.; Xu, Z.
Divergent synthesis of chiral cyclic azides via asymmetric
cycloaddition reactions of vinyl azides. Nat. Commun. 2019, 10,
3158−3165. (g) Donald, J. R.; Berrell, S. L. Radical cyanomethylation
via vinyl azide cascade-fragmentation. Chem. Sci. 2019, 10, 5832−5836.
(h) Shu, W.; Lorente, A.; Gómez-Bengoa, E.; Nevado, C. Expeditious
diastereoselective synthesis of elaborated ketones via remote Csp3–H
functionalization. Nat. Commun. 2017, 8, 13832−13839.
(9) (a) Lu, J.; Wang, J.; Zou, Q.; He, D.; Zhang, L.; Xu, Z.; He, S.;
Luo, Y. Unravelling the Nature of the Active Species as well as the
Doping Effect over Cu/Ce-Based Catalyst for Carbon Monoxide
Preferential Oxidation. ACS Catal. 2019, 9, 2177−2195. (b) Bai, X.;
Chai, S.; Liu, C.; Ma, K.; Cheng, Q.; Tian, Y.; Ding, T.; Jiang, Z.;
Zhang, J.; Zheng, L.; Li, X. Insight into Copper Oxide-Tin Oxide
Catalysts for the Catalytic Oxidation of Carbon Monoxide:
Identification of Active Copper Species and a Reaction Mechanism.
ChemCatChem 2017, 9, 3226−3235. (c) Kareem, H.; Shan, S.; Wu, Z.-
P.; Velasco, L.; Moseman, K.; O'Brien, C. P.; Tran, D. T.; Lee, I. C.;
Maswadeh, Y.; Yang, L.; Mott, D.; Luo, J.; Petkov, V.; Zhong, C.-J.
Catalytic oxidation of propane over palladium alloyed with gold: an
assessment of the chemical and intermediate species. Catal. Sci.
Technol. 2018, 8, 6228−6240. (d) Frenkel, A. I.; Wang, Q.;
Marinkovic, N.; Chen, J. G.; Barrio, L.; Si, R.; Cámara, A. L.; Estrella,
A. M.; Rodriguez, J. A.; Hanson, J. C. Combining X-ray Absorption
and X-ray Diffraction Techniques for in Situ Studies of Chemical
Transformations in Heterogeneous Catalysis: Advantages and
Limitations. J. Phys. Chem. C 2011, 115, 17884−17890. (e) Mink, J.; Goh,
S. L. M.; Högerl, M. P.; Kühn, F. E.; Drees, M.; Mihály, J.; Németh, C.;
Hajba, L. Structure and vibrational spectroscopic study of
phthalimido-functionalized N-heterocyclic palladium complexes.
Correlations between structure and catalytic activity. J. Organomet.
Chem. 2018, 869, 233−250. (f) Naikwade, A.; Bansode, P.; Rashinkar,
G. Magnetically retrievable N-heterocyclic carbene-silver complex
with wingtip ferrocenyl group for Sonogashira coupling. J.
Organomet. Chem. 2018, 866, 112−122. (g) Lal, S. S.; Mhaske, S. T.
AgBr and AgCl nanoparticle doped TEMPO-oxidized microfiber
cellulose as a starting material for antimicrobial filter. Carbohydr.
Polym. 2018, 191, 266−279.
1
2
3
4
5
6
7
8
the Central Universities (2412019ZD001).
REFERENCES
(1) (a) Trost, B. M.; Li, C. Modern Alkyne Chemistry, Wiley VCH,
Weinheim, 2014. (b) Fang, G.; Bi, X. Silver-catalysed reactions of
alkynes: recent advances. Chem. Soc. Rev. 2015, 44, 8124−8173.
(2) (a) Ananikov, V. P.; Tanaka, M. Hydrofunctionalization in
Topics in Organometallic Chemistry; Springer, Berlin, Heidelberg,
2013, vol. 43. (b) Obligacion, J. V.; Chirik, P. J. Earth-abundant
transition metal catalysts for alkene hydrosilylation and
hydroboration. Nat. Rev. Chem. 2018, 2, 15–34. (c) Zeng, X. M. Recent
Advances in Catalytic Sequential Reactions Involving Hydroelement
Addition to Carbon–Carbon Multiple Bonds. Chem. Rev. 2013, 113,
6864–6900. (d) Wen, H.; Liu, G.; Huang, Z. Recent advances in
tridentate iron and cobalt complexes for alkene and alkyne
hydrofunctionalizations. Coord. Chem. Rev. 2019, 386, 138–153.
(3) Banert, K. The Chemistry of Vinyl, Allenyl, and Ethynyl
Azides, In Organic Azides: Syntheses and Applications; Bräse, S.
Banert, K. Eds.; John Wiley & Sons, Ltd., 2010, vol. 5, pp. 115−166.
(4) (a) Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. -Substituted
vinyl azides: an emerging functionalized alkene. Chem. Soc. Rev.
2017, 46, 7208−7228. (b) Hayashi, H.; Kaga, A.; Chiba, S. Application
of Vinyl Azides in Chemical Synthesis: A Recent Update. J. Org.
Chem. 2017, 82, 11981−11989. (c) Shen, T.; Wang, T.; Qin, C.; Jiao, N.
Silver-catalyzed nitrogenation of alkynes: a direct approach to
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
nitriles through C≡C bond cleavage. Angew. Chem. Int. Ed. 2013, 52,
6677−6680. (d) Li, X.; Liao, S.; Wang, Z.; Zhang, L. Ligand-
Accelerated Gold-Catalyzed Addition of in Situ Generated Hydrazoic
Acid to Alkynes under Neat Conditions. Org. Lett. 2017, 19,
3687−3690.
(5) (a) Hyatt, I. F. D.; Croatt, M. P. Reactions of Hypervalent
Iodonium Alkynyl Triflates with Azides: Generation of
Cyanocarbenes. Angew. Chem. Int. Ed. 2012, 51, 7511−7514. (b)
Palacios, F.; Aparicio, D.; de los Santos, J. M.; Perez de Heredia, I.;
Rubiales, G. “One pot” synthesis of -functionalized vinyl azides
through addition of tetrametylguanidinium azide to acetylenic and
allenic compounds. Org. Prep. Proced. Int. 1995, 27, 171−178. (c)
Haddach, M.; Pastor, R.; Riess, J. G. Synthese et reactivite de
nouveaux synthons perfluoroalkyles. comportement atypique des
azirines et aziridines F-alkylees. Tetrahedron 1993, 49, 4627−4638.
(d) Banert, K. Reactions of Unsaturated Azides, 8. –Azidobutatriene
and Azidobutenynes. Chem. Ber. 1989, 122, 1175−1178. (e) Kitamura, T.;
Stang, P. J. Generation, trapping and fate of alkylidenecarbene-
iodonium
ylides
from
the
addition
of
NaN3
to
alkynylphenyliodonium tosylates. Tetrahedron Lett. 1988, 29,
1887−1889. (f) Ochiai, M.; Kunishima, M.; Fuji, K.; Nagao, Y.
Alkynyliodonium tetrafluoroborates as a good Michael acceptor for
an azido group.
A
stereoselective synthesis of (Z)-(-
(10) Wei, X.-H.; Li, Y.-M.; Zhou, A.-X.; Yang, T.-T.; Yang, S.-D.
Silver-Catalyzed Carboazidation of Arylacrylamides. Org. Lett. 2013,
15, 4158−4161.
azidovinyl)iodonium salts. J. Org. Chem. 1988, 53, 6144−6145.
(6) For examples, see: a) Qin, C.; Feng, P.; Ou, Y.; Shen, T.; Wang,
T.; Jiao, N. Selective Csp2-Csp Bond Cleavage: The Nitrogenation of
Alkynes to Amides. Angew. Chem. Int. Ed. 2013, 52, 7850−7854. (b)
Gaydou, M.; Echavarren, A. M. Gold-Catalyzed Synthesis of
Tetrazoles from Alkynes by C−C Bond Cleavage. Angew. Chem. Int.
Ed. 2013, 52, 13468−13471.
(7) (a) Liu, Z.; Liao, P.; Bi, X. General silver-catalyzed
hydroazidation of terminal alkynes by combining TMS-N3 and H2O:
synthesis of vinyl azides. Org. Lett. 2014, 16, 3668−3671. (b) Liu, Z.;
Liu, J.; Zhang, L.; Liao, P.; Song, J.; Bi, X. Silver(I)-catalyzed
hydroazidation of ethynyl carbinols: synthesis of 2-azidoallyl
alcohols. Angew. Chem. Int. Ed. 2014, 53, 5305−5309. (c) Yuan, H.;
Xiao, P.; Zheng, Y.; Zhang, J. DFT studies on the mechanism of
Ag2CO3-catalyzed hydroazidation of unactivated terminal alkynes
with TMS-N3: An insight into the silver(I) activation mode. J.
Comput. Chem. 2017, 38, 2289−2297.
(11) Wang, F.; Xu, P.; Cong, F.; Tang, P. Silver-mediated oxidative
functionalization of alkylsilanes. Chem. Sci. 2018, 9, 8836−8841.
(12) Mani, P.; Singh, A. K.; Awasthi, S. K. AgNO3 catalyzed
synthesis of 5-substituted-1H-tetrazole via [3+2] cycloaddition of
nitriles and sodium azide. Tetrahedron Lett. 2014, 55, 1879−1882.
(13) Wang, W.-X.; Liu, Y.; Wang, Y.-X.; Chen, H.; Bai, L.-J. A novel
and convenient preparation of antibacterial polyacrylonitrile
nanofibers via post-modification using nitrile click chemistry and
electrospinning. Chem. Pap. 2017, 72, 191−200.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi,
(8) (a) Liu, B.; Ning, Y.; Virelli, M.; Zanoni, G.; Anderson, E. A.;
Bi, X. Direct Transformation of Terminal Alkynes into Amidines by a
Silver-Catalyzed Four-Component Reaction. J. Am. Chem. Soc. 2019,
ACS Paragon Plus Environment