ChemComm
Communication
Scheme 4 Selective hydrogenation/elimination.
Scheme 2 Selective Kishi reduction of hemi-ketal.
silane-mediated reduction of hemi-acetals to their corres-
ponding ethers, and we envisioned it would be sufficiently mild
to afford selective reduction in our system.13,18 Delightfully, the
unoptimised reaction proved successful, forming the desired
dehydroxy product 8 in moderate yield, with conserved enan-
tioenrichment and improved diastereomeric control (Scheme 2).
Next, investigations focused on the regioselective reduction
of the ketone functionality, and Luche conditions, which are
known to reduce unsaturated ketones in a 1,2-selective manner,
stood forward as the method of choice.19
Interestingly, the exocyclic ketone was selectively reduced
(Scheme 3a). To rationalise the formation of the product 9 as
exclusively one diastereoisomer, it is important to consider that
cerium catalyses the exchange of hydride with alcohols in the
reduction agent. We suggest that this allows the neighbouring axial
hydroxy group in 7a to direct the reducing agent in a tethered
fashion (Scheme 3b). Dictated by the Bu¨rgi–Dunitz trajectory, the
product 9 can then exclusively be formed from the major diaster-
eomer of 7a, thereby giving rise to the observed complete diastereos-
electivity. The relative stereochemistry of the product was confirmed
by NOESY (Scheme 3c).
To selectively modify the final main functionality of the 3-pyrone,
hydrogenation of the C–C-double bond was attempted. The reaction
was unsuccessful in methanol, but proceeded smoothly in ethyl
acetate. Interestingly, elimination immediately followed, affording
the product 10 in moderate yield under unoptimised conditions,
and with preserved enantiomeric excess (Scheme 4). Attempts to
avoid the elimination were unsuccessful, suggesting high thermo-
dynamic stability of the tetra-substituted olefin.
Results outlining the development of a new organocatalytic
one-pot reaction cascade for the annulation of chiral 3-pyrone
derivatives in good yields and excellent enantiomeric excesses
have been presented. A wide selection of functional groups has
successfully been incorporated in the products to demonstrate 12 A. Fu
ring systems have been conducted, in all cases affording the
desired products regio- and stereoselectively in good yield.
This work has been made possible by financial support from
Aarhus University, the Carlsberg Foundation and FNU.
Notes and references
1 K. C. Nicolaou, Q. Kang, S. Y. Ng and D. Y.-K. Chen, J. Am. Chem.
Soc., 2010, 132, 8219.
2 S. J. Shimshock, R. E. Waltermire and P. DeShong, J. Am. Chem. Soc.,
1991, 113, 8791.
3 P. A. Wender, C. D. Jesudason, H. Nakahira, N. Tamura, A. L. Tebbe
and Y. Ueno, J. Am. Chem. Soc., 1997, 119, 12976.
4 (a) J. M. Harris, M. D. Keranen and G. A. O’Doherty, J. Org. Chem.,
1999, 64, 2982; (b) L. Zhu, A. Talukdar, G. Zhang, J. P. Kedenburg
and P. G. Wang, Synlett, 2005, 1547; (c) R. S. Babu, Q. Chen, S.-
W. Kang, M. Zhou and G. A. O’Doherty, J. Am. Chem. Soc., 2012,
134, 11952; (d) S. O. Bajaj, E. U. Sharif, N. G. Akhmedov and
G. A. O’Doherty, Chem. Sci., 2014, 5, 2230.
5 M. D. Burke, E. M. Berger and S. L. Schreiber, J. Am. Chem. Soc.,
2004, 126, 14095.
6 T. C. Coombs, M. D. Lee IV, H. Wong, M. Armstrong, B. Cheng,
W. Chen, A. F. Moretto and L. S. Liebeskind, J. Org. Chem., 2008, 73, 882.
7 (a) R. Sekizawa, H. Iinuma, H. Naganawa, M. Hamada, T. Takeuchi,
J. Yamaizumi and K. Umezawa, J. Antibiot., 1996, 49, 487;
(b) M. S. Abdelfattah, M. K. Kharel, J. A. Hitron, I. Baig and
J. Rohr, J. Nat. Prod., 2008, 71, 1569; (c) K. A. Shaaban,
T. A. Ahmed, M. Leggas and J. Rohr, J. Nat. Prod., 2012, 75, 1383.
8 For a review, see: Z. J. Witczak, Levoglucosenone and Levoglucosans:
Chemistry and Application, ATL Press Inc. Science Publishers, Mount
Prospect, Illinois, 1994.
9 J. Sichaem, T. Aree, S. Khumkratok, J. Jong-aramruang and S. Tip-
pyang, Phytochem. Lett., 2012, 5, 665.
10 (a) O. Achmatowicz Jr., P. Bukowski, B. Szechner, Z. Zwierzchowska
and A. Zamojski, Tetrahedron, 1971, 27, 1973; (b) For the use in
natural product synthesis, see: J. M. Harris, M. Li, J. G. Scott and
G. A. O’Doherty, in Strategy and Tactics in Natural Product Synthesis,
ed. M. Harmata, Elsevier, London, 2004, ch. 8, vol. 5, pp. 221–253;
(c) M. J. Palframan and G. Pattenden, Chem. Commun., 2014, DOI:
10.1039/C4CC01196A.
11 K. Cheng, A. R. Kelly, R. A. Kohn, J. F. Dweck and P. J. Walsh, Org.
Lett., 2009, 11, 2703.
¨rstner and T. Nagano, J. Am. Chem. Soc., 2007, 129, 1906.
13 N. D. Griggs and A. J. Phillips, Org. Lett., 2008, 10, 4955.
14 (a) Ł. Albrecht, L. K. Ransborg and K. A. Jørgensen, Catal. Sci.
Technol., 2012, 2, 1089; (b) F. Giacalone, M. Gruttadauria,
P. Agrigento and R. Noto, Chem. Soc. Rev., 2012, 41, 2406. For a
review on organocatalytic cyclisation reactions, see: (c) A. Moyano
and R. Rios, Chem. Rev., 2011, 111, 4703.
the scope of the methodology. Finally, selective reduction of
each of the three main functionalities of the obtained 3-pyrone
15 For a review on organocatalytic one-pot reactions, see: (a) C. Grondal,
M. Jeanty and D. Enders, Nat. Chem., 2010, 2, 167; (b) Ł. Albrecht,
H. Jiang and K. A. Jørgensen, Angew. Chem., Int. Ed., 2011, 50, 8492;
(c) H. Pellissier, Adv. Synth. Catal., 2012, 354, 237; (d) C. M. R. Volla,
I. Atodiresei and M. Rueping, Chem. Rev., 2014, 114, 2390.
16 For the synthesis of hydroxy alkyl and amino alkyl substituted
furans, see: Ł. Albrecht, L. K. Ransborg, B. Gschwend and
K. A. Jørgensen, J. Am. Chem. Soc., 2010, 132, 17886.
´
17 (a) M. Marigo, J. Franzen, T. B. Poulsen, Z. Wei and K. A. Jørgensen,
J. Am. Chem. Soc., 2005, 127, 6964; (b) R. L. Davis, K. L. Jensen,
B. Gschwend and K. A. Jørgensen, Chem. – Eur. J., 2014, 20, 64.
18 M. D. Lewis, J. K. Cha and Y. Kishi, J. Am. Chem. Soc., 1982, 104, 4976.
19 A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
Scheme 3 Selective Luche reduction of the exocyclic ketone. (a) Reaction
conditions. (b) Tethered reaction intermediate. (c) Notable observed NOEs.
7606 | Chem. Commun., 2014, 50, 7604--7606
This journal is ©The Royal Society of Chemistry 2014