Aminophenyl benzothiazoles, hydrogen bond, NMR and DFT calculations
[7] S. F. Lichtenthaler, N. Ida, G. Multhaup, C. L. Masters, K. Beyreuther.
Conclusions
Biochemistry 1997, 36, 15396.
[8] J. D. Harper, C. M. Lieber, P. T. Landsbury. Chem. Biol. 1997, 119, 4.
[9] J. D. Harper, P. T. Landsbury Jr.. Ann. Rev. Biochem. 1997, 66, 385.
[10] T. J. Eckroat, A. S. Mayhoub, S. G. Tsodikova. Beilstein J. Org. Chem.
2013, 9, –1012.
[11] W. E. Klunk, Y. Wang, G. Huang, M. L. Debnath, D. P. Holt, C. A. Mathis.
Life Sci. 2001, 69, 1471.
[12] W. E. Klunk, Y. Wang, G. Huang, M. L. Debnath, D. P. Holt, L. Shao,
R. L. Hamilton, M. D. Ikonomovic, S. T. DeKosky, C. A. Mathis.
J. Neuro Sci. 2003, 23, 2086.
In summary, we have prepared several ortho-aminophenyl and
para-aminophenyl benzothiazole derivatives and characterised
them using 1H, 13C and 15N NMR spectroscopy. The data revealed
that there were only marginal changes in the aromatic proton
chemical shift in the para and ortho series of compounds.
However, the NH proton chemical shifts varied significantly
between the para and ortho compounds due to the formation
of a hydrogen bond between the NH group and the nitrogen in
thiazole ring. Additionally, we observed significant changes in
the splitting patterns for the CH/CH2 groups in the structure of
the o-aminophenyl benzothiazoles. This is in contrast to that
obtained for the p-aminophenyl benzothiazole derivatives and it
is rationalised due to the slow exchange of hydrogen due to the
hydrogen bond. The presence of intramolecular hydrogen bond
in o-aminophenyl benzothiazole derivatives may aid the binding
of these compounds towards amyloid fibrils due to their resulting
planar conformation. DFT calculations provided further evidence
regarding the number of conformers for each of the molecules.
When the hydrogen bond was present, the energy was reduced
in conformers which comprised >99% of the Boltzmann popula-
tion. The conformational search of para-substituted compounds
did not show the presence of any hydrogen bonds. DFT calcula-
tions were consistent with the observed NMR chemical shifts.
[13] C. A. Mathis, Y. Wang, D. P. Holt, G. Huang, M. L. Debnath, W. E. Klunk.
J. Med. Chem. 2003, 46, 2740.
[14] C. Solbach, M. Uebele, G. Reischl, H.-J. Machulla. J. Appl. Radiat. Isot.
2005, 62, 591.
[15] W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist, D. P. Holt,
M. Bergström, I. Savitcheva, G. Huang, S. Estrada, B. Ausén, M. L. Debnath,
J. Barletta, J. C. Price, J. Sandell, B. J. Lopresti, A. Wall, P. Koivisto, G. Antoni,
C. A. Mathis, B. Långström. Ann. Neurol. 2004, 55, 306.
[16] M. M. Svedberg, H. Hall, E. H. Lindahl, S. Estrada, Z. Z. Guan, A. Nordberg,
B. Långström. Neurochem. Int. 2009, 54, 347.
[17] K. Serdons, T. Verduyckt, D. Vanderghinste, P. Borghgraef, J. Cleynhens,
F. Van Leuven, H. Kung, G. Bormans, A. Verbruggen. Eur. J. Med. Chem.
2009, 44, 1415.
[18] A. E. Johnson, F. Jeppsson, J. Sandell, D. Wensbo, J. A. M. Neelissen,
A. Juréus, P. Ström, H. Norman, L. Farde, S. P. S. Svensson.
J. Neurochem. 2009, 108, 1177.
[19] C. H. Lin, R. Bhatia, R. Lal. FSAEB 2001, 15, 2433.
[20] E. Gazit. FASEB 2002, 16, 77.
[21] A. Petric, S. A. Johnson, H. V. Pham, Y. Li, S. Ceh, A. Golobic,
E. D. Agdeppa, G. Timbol, J. Liu, G. Keum, N. Satyamoorthy,
V. Kepe, K. N. Hauk, J. R. Barrio. Proc. Natl. Acad. Sci. U. S. A.
2012, 109, 16492.
[22] T. K. Venkatachalam, D. Stimson, R. Bhalla, G. K. Pierens, D. Reutens,
(manuscript under review by J. Labelled Compd. Rad.)
[23] Macro Model, version 10.1, Schrödinger, LLC, New York, NY, 2013.
[24] Jaguar, version 8.1, Schrödinger, LLC, New York, NY, 2013.
[25] J. K. Dey, S. K. Dogra. Bull. Chim. Soc. Jpn. 1991, 64, 3142.
[26] R. O. Duthaler, J. D. Roberts. J. Am. Chem. Soc. 1978, 100, 3889.
[27] C. H. Cheung, D. S. Surry, S. L. Buchwald. Org. Lett. 2013, 15, 3734.
[28] Y. Zhang, L. Y. Chen, W. X. Yin, J. Yin, S. B. Zhang, C. L. Liu. Dalton
Trans. 2011, 40, 4830.
References
[1] Y. Zhang, M. Chakraborty, C. G. Cerda-Smith, R. N. Bratton, N. E. Maurer,
E. M. Senser, M. Novak. J. Org. Chem. 2013, 78, 6992.
[2] M. Chakraborty, K. J. Jin, S. A. Glover, M. Novak. J. Org. Chem. 2010,75, 5296.
[3] M. F. G. Stevens, C. J. McCall, P. Lelievald, P. Alexander, A. Richter,
D. E. Davies. J. Med. Chem. 1994, 37, 1689.
[4] M. F. G. Stevens, D. F. Shi, A. Castro. J. Chem. Soc. Perkin Trans. 1996, 1, 83.
[5] D. F. Shi, T. D. Bradshaw, S. Wrigley, C. J. McCall, P. Lelieveld, I. Fichtner,
M. F. G. Stevens. J. Med. Chem. 1996, 39, 3375.
[29] N. Park, Y. Heo, M. R. Kumar, Y. Kim, K. H. Song, S. Lee. Eur. J. Org.
Chem. 2012, 10, 1984.
[6] R.Wang,D.Sweeney,S.E.Gandy,S.S.Sisodia.J. Biol. Chem. 1996,271, 31894.
Magn. Reson. Chem. (2014)
Copyright © 2014 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/mrc