ACS Catalysis
Research Article
Gas Chromatography. Gas chromatography experiments were
performed on a Buck Scientific 910 gas chromatograph with FID/
TCD and methanizer. The system uses N2 as a carrier gas and allows
for the determination of the following gases and detection limits: H2 ≥
100 ppm, CO ≥ 1 ppm, and CO2 ≥ 1 ppm.
(3) (a) Navarro, R. M.; Pena, M. A.; Fierro, J. L. Chem. Rev. 2007,
107, 3952−3991. (b) Boddien, A.; Loges, B.; Junge, H.; Beller, M.
ChemSusChem 2008, 1, 751−758. (c) Eberle, U.; Felderhoff, M.;
Schuth, F. Angew. Chem., Int. Ed. 2009, 48, 6608−6630. (d) Staubitz,
A.; Robertson, A. P.; Manners, I. Chem. Rev. 2010, 110, 4079−4124.
(e) Grasemann, M.; Laurenczy, G. Energy Environ. Sci. 2012, 5, 8171−
8181. (f) Dalebrook, A. F.; Gan, W.; Grasemann, M.; Moret, S.;
Laurenczy, G. Chem. Commun. 2013, 49, 8735−8751.
Representative Procedure for Catalytic MeOH Dehydrogen-
ation in the Presence and Absence of Water. In an inert
atmosphere glovebox, a 50 mL Schlenk flask was loaded with the
appropriate catalyst, MeOH, additive (LA), water (for aqueous phase
reactions), and the desired solvent. The Schlenk flask was sealed with a
glass stopper and removed from the inert atmosphere glovebox and
attached to a gas buret setup and reflux condenser (see Figure S1).
The gas buret and tubing was subjected to three vacuum/N2 purge
cycles and allowed to equilibrate. For aqueous phase reactions the U-
tube trap was cooled with liquid nitrogen. The solution flask was then
lowered into an oil bath preheated to the desired temperature upon
which gas evolution began immediately. The change in water level in
the gas buret (Vobs) was used to determine turnover using previously
reported methods (see Figure S1).8c,10d Each equivalent of H2
produced was taken to be one turnover. For aqueous phase reactions,
upon completion of the reaction, the U-tube was removed from the
liquid nitrogen bath and the CO2 gas evolved was measured by the
buret to be a third of total turnover. In all cases, a blank reaction was
run in which no catalyst was added to the solution. The volume of gas
obtained from this reaction (trace solvent and MeOH) was recorded
(4) Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. Int. J. Hydrogen
Energy 2013, 38, 4901−4934.
(5) (a) Olah, G. A. Angew. Chem., Int. Ed. 2005, 44, 2636−2639.
(b) Olah, G. A. Angew. Chem., Int. Ed. 2013, 52, 104−107.
(6) (a) Palo, D. R.; Dagle, R. A.; Holladay, J. D. Chem. Rev. 2007,
107, 3992−4021. (b) Gartner, F.; Losse, S.; Boddien, A.; Pohl, M.-M.;
̈
Denurra, S.; Junge, H.; Beller, M. ChemSusChem 2012, 5, 530−533.
(c) Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. J. Am.
Chem. Soc. 2011, 133, 18034−18037.
(7) (a) Itagaki, H.; Saito, Y.; Shinoda, S. J. Mol. Catal. 1987, 41, 209−
220. (b) Morton, D.; Cole-Hamilton, D. J. J. Chem. Soc., Chem.
Commun. 1987, 248−249.
(8) (a) Rodríguez-Lugo, R. E.; Trincado, M.; Vogt, M.; Tewes, F.;
Santiso-Quinones, G.; Grutzmacher, H. Nat. Chem. 2013, 5, 342−347.
̈
(b) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.;
Gladiali, S.; Beller, M. Nature 2013, 495, 85−89. (c) Alberico, E.;
Sponholz, P.; Cordes, C.; Nielsen, M.; Drexler, H.-J.; Baumann, W.;
Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 14162−14166.
(d) Hu, P.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. ACS Catal.
2014, 2649−2652. (e) Monney, A.; Barsch, E.; Sponholz, P.; Junge,
H.; Ludwig, R.; Beller, M. Chem. Commun. 2014, 50, 707−709.
(f) Campos, J.; Sharninghausen, L. S.; Manas, M. G.; Crabtree, R. H.
Inorg. Chem. 2015, in press, DOI: 10.1021/ic502521c.
as Vblank
.
ASSOCIATED CONTENT
* Supporting Information
■
S
The following files are available free of charge on the ACS
(9) Koehne, I.; Schmeier, T. J.; Bielinski, E. A.; Pan, C. J.; Lagaditis,
Further experimental details, X-ray information for
(CyPNHP)Fe(CO)2, and details of DFT calculations
P. O.; Bernskoetter, W. H.; Takase, M. K.; Wurtele, C.; Hazari, N.;
̈
Schneider, S. Inorg. Chem. 2014, 53, 2133−2143.
(10) (a) Chakraborty, S.; Dai, H.; Bhattacharya, P.; Fairweather, N.
T.; Gibson, M. S.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2014, 136,
7869−7872. (b) Chakraborty, S.; Brennessel, W. W.; Jones, W. D. J.
Am. Chem. Soc. 2014, 136, 8564−8567. (c) Bornschein, C.;
Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.; Baumann, W.;
Junge, H.; Junge, K.; Beller, M. Nat. Commun. 2014, 5, 4111.
(d) Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.;
AUTHOR INFORMATION
Corresponding Authors
■
Wurtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S. J. Am.
̈
Chem. Soc. 2014, 136, 10234−10237. (e) Chakraborty, S.; Lagaditis, P.
Notes
The authors declare no competing financial interest.
O.; Forster, M.; Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones,
̈
W. D.; Schneider, S. ACS Catal. 2014, 4, 3994−4003.
(11) (a) Smith, T. A.; Aplin, R. P.; Maitlis, P. M. J. Organomet. Chem.
1985, 291, c13−c14. (b) Yang, L.-C.; Ishida, T.; Yamakawa, T.;
Shinoda, S. J. Mol. Catal. A: Chem. 1996, 108, 87−93. (c) Yamakawa,
T.; Hiroi, M.; Shinoda, S. J. Chem. Soc., Dalton Trans. 1994, 2265−
2269. (d) Shinoda, S.; Yamakawa, T. J. Chem. Soc., Chem. Commun.
1990, 1511−1512.
ACKNOWLEDGMENTS
■
W.H.B. and N.H. thank the National Science Foundation for
support through Grant CHE-1240020, a Center for Chemical
Innovation. M.C.H. acknowledges support through the COST
Action 1205 (CARISMA). Calculations were performed at the
Center for Scientific Computing (CSC) Frankfurt on the
FUCHS and LOEWE-CSC high-performance compute clus-
ters. N.H. and W.H.B. are fellows of the Alfred P. Sloan
Foundation, and N.H. is a Camille and Henry Dreyfus
Foundation Teacher Scholar. We are grateful to Professor
Sven Schneider for valuable discussions, Steven Ahn for help
with GC, and Dr. Brandon Mercado for assistance with
crystallography.
(12) Qu, S.; Dai, H.; Dang, Y.; Song, C.; Wang, Z.-X.; Guan, H. ACS
Catal. 2014, 4377−4388.
(13) In the experiment using a low catalyst loading of 2a (0.001 mol
%) it was possible to reduce the amount of LiBF4 from 10 to 1 mol %
with no decrease in catalytic activity.
(14) Zweifel, T.; Naubron, J.-V.; Buttner, T.; Ott, T.; Grutzmacher,
̈
̈
H. Angew. Chem., Int. Ed. 2008, 47, 3245−3249.
(15) Yang, X. ACS Catal. 2013, 3, 2684−2688.
(16) For a more detailed discussion of the differences between Yang’s
proposed pathway and our pathway see ref 10e.
́
(17) Azofra, L. M.; Alkorta, I.; Elguero, J.; Toro-Labbe, A. J. Phys.
Chem. A 2012, 116, 8250−8259.
(18) Even though the best catalytic activity was observed using Li+ as
the LA, we computationally modeled the LA as Na+. This is due to the
difficulties in modelling the aggregation of Li+, which can lead to the
presence of clusters in solution.
REFERENCES
■
(1) (a) Dincer, I. Energy Policy 1999, 27, 845−854. (b) Lewis, N. S.;
Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729−15735.
(2) (a) Bockris, J. O. M. Science 1972, 176, 1323. (b) Bockris, J. O.
M. Int. J. Hydrogen Energy 2002, 27, 731−740. (c) Midilli, A.; Ay, M.;
Dincer, I.; Rosen, M. A. Renewable Sust. Energy Rev. 2005, 9, 255−271.
(19) The decarboxylation of D1 to form D3 is thermodynamically
disfavored. This indicates that CO2 insertion into D3 is thermody-
2414
ACS Catal. 2015, 5, 2404−2415