Communication
ChemComm
enhanced emission in the solid state. Together with the observa-
tion of the key role of the activation barrier in phenyl ring twisting
on organic opto/electronics,9,10 the present attempt, on one hand,
disclosed instructive information about tuning the performance of
organic luminogens by making subtle balance between AIE and
ACQ units; and on the other hand, derived red-emitting molecules
with good quantum efficiency and high stability.
This work was financially supported by the National Science
Foundation of China (51273175) and the National Basic Research
Program of China (973 Program, 2013CB834704).
Fig. 4 Change in FL intensity (A) and quantum efficiency (B) of 3 in
THF–water mixtures with different fw values; the inset images show the
corresponding FL photographs. Concentration: 10 mM; lex: 365 nm.
Notes and references
1 (a) C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen and Y. Y. Chien, Adv.
Mater., 2004, 16, 61; (b) K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih,
F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen and C. H. Cheng, Adv.
Funct. Mater., 2008, 18, 67.
2 Fluorescence Sensors and Biosensors, ed. R. B. Thompson, CRC Press,
LLC, Boca Raton, FL, 2006.
3 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok,
X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740;
(b) B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, J. Am. Chem. Soc.,
2002, 124, 14410.
4 (a) Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009,
4332; (b) Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev.,
2011, 40, 5361.
We also monitored the fluorescent behaviors of 3 in THF–water
mixtures with different fw values (Fig. 4). When fw o 50%, the
emission intensity monotonously decreases to negligible due to
the ICT process. When fw Z 50%, aggregates form in the system
and the emission intensity boosts up due to the RIR and reduced
ICT process. It is noticeable in Fig. 4A that the emission peak
shows a blue-shift at lower fw (0–50%, 564–557 nm) in solution and
a red-shift at higher fw (50–95%, 575–588 nm). The spectral shifts
in the opposite directions imply that the molecules take a more or
less twisted conformation in solvent mixtures and in aggregates,
respectively.
The D–A structure bestows molecule 3 with strong dipole–
dipole interaction, which may lead to the formation of ordered
aggregates in mixture solvent. As shown in Fig. S20 (ESI†), at
fw = 50%, ribbon-like structures of sizes of around 1 micrometer
width and several tens to hundred micrometers length can be
observed in the images of the scanning electron microscope
(SEM). The red confocal fluorescent image is also displayed in
Fig. S20 (ESI†). At higher fw, the aggregates show a less ordered
microstructure with smaller sizes. For DBr-Dph-DPP, 1 and 2, no
such well-ordered micro-structures can be observed under the
same conditions (Fig. S21, ESI†). Also shown in Fig. S20 and S21
(ESI†) are the confocal fluorescent images of the aggregates of
molecule 2 collected in the THF–water mixture with fw = 50%. The
moderate fluorescence efficiency and red emission imply that
their aggregates are useful candidates for bioimaging agents.
In summary, we have systematically investigated the fluores-
cent behaviors of the TPE–DPP conjugates by using rationally
designed DPP derivatives, or molecules 1, 2, 3 and 4. These
molecules constructed by linking TPE (AIE-gen) and DPP (ACQ-
gen) moieties with rotational phenyls demonstrate plentiful photo/
5 Y. Dong, J. W. Y. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang, J. Sun and
H. S. Kwok, Appl. Phys. Lett., 2007, 91, 11111.
6 (a) Q. Zhao, S. Zhang, Y. Liu, J. Mei, S. Chen, P. Lu, A. Qin, Y. Ma,
J. Z. Sun and B. Z. Tang, J. Mater. Chem., 2012, 22, 7387; (b) Z. Zhao,
S. Chen, J. W. Y. Lam, P. Lu, Y. Zhong, K. S. Wong, H. S. Kwok and
B. Z. Tang, Chem. Commun., 2010, 46, 2221; (c) W. Z. Yuan, P. Lu,
S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu, H. S. Kowk, Y. Ma and
B. Z. Tang, Adv. Mater., 2010, 22, 2159.
7 (a) S. Qu and H. Tian, Chem. Commun., 2012, 48, 3039; (b) Y. Qu,
J. Hua and H. Tian, Org. Lett., 2010, 12, 3320; (c) M. M. Wienk,
M. Turbiez, J. Gilot and R. A. J. Janssen, Adv. Mater., 2008, 20, 2556;
´
(d) B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed., 2008,
47, 58.
8 (a) Q. Zhao, K. Li, S. Chen, A. Qin, D. Ding, S. Zhang, Y. Liu, B. Liu,
J. Z. Sun and B. Z. Tang, J. Mater. Chem., 2012, 22, 15128;
(b) Z. J. Zhao, P. Lu, J. W. Y. Lam, Z. M. Wang, C. Y. K. Chan,
H. H. Y. Sung, I. D. Williams, Y. G. Ma and B. Z. Tang, Chem. Sci.,
2011, 2, 672.
9 (a) M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour,
Science, 1997, 278, 252; (b) W. B. Davis, W. A. Svec, M. A. Ratner and
M. R. Wasielewski, Nature, 1998, 396, 60; (c) D. Segal, A. Nitzan,
W. B. Davis, M. R. Wasielewski and M. A. Ratner, J. Phys. Chem. B,
2000, 104, 3817.
10 (a) S. Ranganathan, I. Steidel, F. Anariba and R. L. McCreery, Nano
Lett., 2001, 1, 491; (b) F. Anariba and R. L. McCreery, J. Phys. Chem. B,
2002, 106, 10355; (c) F. Anariba, J. K. Steach and R. L. McCreery,
J. Phys. Chem. B, 2005, 109, 11163.
11 (a) X. Y. Shen, Y. J. Wang, E. Zhao, W. Z. Yuan, P. Lu, A. Qin, Y. Ma,
J. Z. Sun and B. Z. Tang, J. Phys. Chem. C, 2013, 117, 7334;
(b) C. Reichardt, Chem. Rev., 1994, 94, 2319.
electronic properties, including segmental electronic conjugation 12 (a) X. Y. Shen, W. Z. Yuan, Y. Liu, Q. Zhao, P. Lu, Y. Ma,
I. D. Williams, A. Qin, J. Z. Sun and B. Z. Tang, J. Phys. Chem. C,
2012, 116, 10541; (b) J. Mei, J. Wang, A. Qin, H. Zhao, W. Z. Yuan,
Z. Zhao, H. H. Y. Sung, C. Deng, S. Zhang, I. D. Williams, J. Z. Sun
between the two building blocks, partially quenched fluorescence
in solution, a limited solvatochromic effect in solvents with
different polarity, a red-shifted emission band, and fractionally
and B. Z. Tang, J. Mater. Chem., 2012, 22, 4290.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014