ChemComm
Communication
2002, 35, 774; (c) G. Csjernyik, A. H. Ell, L. Fadini, B. Pugin and
J.-E. Backvall, J. Org. Chem., 2002, 67, 1657; (d) M. S. Sigman and
D. R. Jensen, Acc. Chem. Res., 2006, 39, 221; (e) M. J. Schultz and M. S.
Sigman, Tetrahedron, 2006, 62, 8227; ( f ) B. Jiang, Y. Feng and
E. A. Ison, J. Am. Chem. Soc., 2008, 130, 14462.
4 For selected references, see: (a) G. Barak, J. Dakka and Y. Sasson,
J. Org. Chem., 1988, 53, 3553; (b) K. Sato, M. Aoki, J. Takagi and
R. Noyori, J. Am. Chem. Soc., 1997, 119, 12386; (c) R. Noyori, M. Aoki
and K. Sato, Chem. Commun., 2003, 1977.
5 For selected references, see: (a) C.-H. Jun, D.-Y. Lee, Y.-H. Kim and
H. Lee, Organometallics, 2001, 20, 2928; (b) D. Morales-Morales,
R. Redon, Z. Wang, D. W. Lee, C. Yung, K. Magnuson and C. Jensen,
Can. J. Chem., 2001, 79, 823; (c) P. A. Slatford, M. K. Whittlesey and
J. M. J. Williams, Tetrahedron Lett., 2006, 47, 6787; (d) D. Gnanamgari,
A. Moores, E. Rajaseelan and R. H. Crabtree, Organometallics, 2007,
26, 1226; (e) N. A. Owston, A. J. Parker and J. M. Williams, Chem.
Commun., 2008, 624.
Scheme 2 Formation of complex 8 and its reactivity.
6 For selected references, see: (a) M. L. S. Almeida, M. Beller, G.-Z. Wang
and J.-E. Backvall, Chem. – Eur. J., 1996, 2, 1533; (b) K. Fujita,
S. Furukawa and R. Yamaguchi, J. Organomet. Chem., 2002, 649, 289;
(c) F. Hanasaka, K. Fujita and R. Yamaguchi, Organometallics, 2005,
24, 3422; (d) M. G. Coleman, A. N. Brown, B. A. Bolton and H. Guan,
Adv. Synth. Catal., 2010, 352, 967; (e) S. A. Moyer and T. W. Funk,
Tetrahedron Lett., 2010, 51, 5430; ( f ) M. Bertoli, A. Choualeb, A. J.
Lough, B. Moore, D. Spasyuk and D. G. Gusev, Organometallics, 2011,
30, 3479; (g) S. R. Clapham, A. Hadzovic and R. H. Morris, Coord. Chem.
Rev., 2004, 248, 2201; (h) R. Levy, C. Azerraf, D. Gelman, K. Rueck-Braun
and P. N. Kapoor, Catal. Commun., 2009, 11, 298; (i) C. del Pozo,
M. Iglesias and F. Sanchez, Organometallics, 2011, 30, 2180.
7 For recent review see: (a) J. D. Holladay, J. Hu, D. L. King and
Y. Wang, Catal. Today, 2009, 139, 244; (b) N. Armaroli and V. Balzani,
ChemSusChem, 2011, 4, 21.
8 For selected references for hydrogen production from small
molecules, see: (a) T. C. Johnson, D. J. Morris and M. Wills, Chem.
Soc. Rev., 2010, 39, 81; (b) M. Nielsen, E. Alberico, W. Baumann,
H.-J. Drexler, H. Junge and S. Gladiali, Nature, 2013, 495, 85;
Scheme 3 Preparation of intermediate 10 and its catalytic activity.
reaction of 8 with 2-pyridylmethanol was carried out at room
temperature.
In the 1H NMR spectrum, the expected intermediate could not
be observed; however, the corresponding product, 2-pyridine-
carboxaldehyde, was slowly formed even at room temperature,
indicating that the intermediate was too unstable to be isolated.
Therefore, the reaction of a more stable iron analogue having a
Z5-C5Me5 group, (Z5-C5Me5)Fe(CO)(Py)(Me) (9),17 with 2-pyridyl-
methane thiol was carried out at room temperature. After the
work-up of the reaction mixture, the expected thioalkoxy complex 10,
(Z5-C5Me5)Fe(CO)(PyCH2S), was isolated in 98% yield, and charac-
¨
(c) A. Boddien, D. Mellmann, F. Gartner, R. Jackstell, H. Junge,
P. J. Dyson, G. Laurenczy, R. Ludwig and M. Beller, Science, 2012,
333, 1733; (d) S. Michlik and R. Kempe, Nat. Chem., 2013, 5, 140;
(e) R. E. Rodriguez-Lugo, M. Trincade, M. Vogt, F. Tewes, G. Santiso-
Quinones and H. Gru¨tzmacher, Nat. Chem., 2013, 5, 342.
1
terized by H NMR, 13C NMR, and elemental analysis (Scheme 3).
Although 10 showed a catalytic activity for the dehydrogenation
of 2-pyridylbenzylalcohol even without the presence of a base
(NaH) similar to that of 8, the corresponding ketone was
obtained in only 36% yield because of the stabilization of 10
by the Z5-C5Me5 ligand and the strong S–Fe bond compared to
the O–Fe bond of A. The formation of 10 and its catalytic
activity toward the dehydrogenation of 2-pyridylbenzylalcohol
are consistent with our proposed catalytic cycle.
In conclusion, we demonstrated the first iron-catalyzed dehydro-
genation of alcohols (hydrogen production). This reaction works
only for the 2-pyridylmethanol derivatives. The highest TON
achieved was 67 000 using a combination of 1 and NaH, as the
catalysts for the dehydrogenation reaction. Precursor 8 exhibited a
similar catalytic activity even in the absence of NaH. The mecha-
nistic study supported the proposed reaction pathway.
9 (a) H. B. Charman, J. Chem. Soc. B, 1970, 584; (b) S. Shinoda,
T. Kojima and Y. Saito, J. Mol. Catal., 1983, 18, 99; (c) D. Morton
and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun., 1987, 248;
(d) D. Morton, D. J. Cole-Hamilton, J. A. Schofield and R. J. Pryce,
Polyhedron, 1987, 6, 2187; (e) E. Delgado-Lieta, M. A. Luke,
R. F. Jones and D. J. Cole-Hamilton, Polyhedron, 1982, 1, 836;
( f ) D. Morton, D. J. Cole-Hamilton, I. D. Utuk, M. Paneque-Sosa
and M. Lopez-Poveda, J. Chem. Soc., Dalton Trans., 1989, 489.
10 (a) A. Dobson and S. D. Robinson, J. Organomet. Chem., 1975, 87,
C52–C53; (b) G. B. W. L. Ligthart, R. H. Meijer, M. P. J. Donners,
J. Meuldijk, J. A. J. M. Vekemans and L. A. Hulshof, Tetrahedron Lett.,
2003, 44, 1507; (c) J. Zhang, M. Gandelman, L. J. W. Shimon,
H. Rozenberg and D. Milstein, Organometallics, 2004, 23, 4026;
(d) G. R. A. Adair and J. M. J. Williams, Tetrahedron Lett., 2005,
46, 8233; (e) J. van Buijtenen, J. Meuldijk, J. A. J. M. Vekemans,
L. A. Hulshof, H. Kooijman and A. L. Spek, Organometallics, 2006,
25, 873; ( f ) H. Junge, B. Loges and M. Beller, Chem. Commun., 2007,
522; (g) W. Baratta, G. Bossi, E. Putignano and P. Rigo, Chem. – Eur. J.,
2011, 17, 3474; (h) A. Prades, E. Peris and M. Albrecht, Organometallics,
2011, 30, 1162; (i) J. Zhang, E. Balaraman, G. Leitus and D. Milstein,
Organometallics, 2011, 30, 5716; ( j) N. D. Schley, G. E. Dobereiner and
R. H. Crabtree, Organometallics, 2011, 30, 4174; (k) M. Nielsen,
A. Kammer, D. Cozzula, H. Junge, S. Gladiali and M. Beller, Angew.
Chem., Int. Ed., 2011, 50, 9593.
Notes and references
1 Chromium Salts: (a) J. R. Holum, J. Org. Chem., 1961, 26, 4814;
(b) D. G. Lee and U. A. Spitzer, J. Org. Chem., 1970, 35, 3589.
2 Other oxidants: (a) R. V. Stevens, K. T. Chapman and H. N. Weller,
J. Org. Chem., 1980, 45, 2030; (b) R. J. Highet and W. C. Wildman,
J. Am. Chem. Soc., 1955, 77, 4399; (c) A. J. Mancuso and D. Swern,
Synthesis, 1981, 165; (d) D. B. Dess and J. C. Martin, J. Org. Chem.,
1983, 48, 4155.
3 For selected references, see: (a) I. E. Marko, P. R. Giles, M. Tsukazaki,
S. M. Brown and C. J. Urch, Science, 1996, 274, 2044; (b) R. A. Sheldon,
I. W. C. E. Arends, G.-J. ten Brink and A. Dijksman, Acc. Chem. Res.,
11 (a) K. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9, 109;
(b) K. Fujita, T. Yoshida, Y. Imori and R. Yamaguchi, Org. Lett., 2011,
13, 2278; (c) R. Kawahara, K. Fujita and R. Yamaguchi, J. Am. Chem.
Soc., 2012, 134, 3643; (d) R. Kawahara, K. Fujita and R. Yamaguchi,
Angew. Chem., Int. Ed., 2012, 51, 12790.
12 (a) Y. Lin, D. Ma and X. Lu, Tetrahedron Lett., 1987, 28, 3115; (b) A. M.
Royer, T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 2008, 47, 395;
(c) A. M. Royer, T. B. Rauchfuss and D. L. Gray, Organometallics, 2010,
29, 6763; (d) S. Musa, I. Shaposhnikov, S. Cohen and D. Gelman,
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 7941--7944 | 7943