10.1002/anie.201907758
Angewandte Chemie International Edition
COMMUNICATION
[1] a) T. S. Silva, M. T. Rodrigues, H. Santos, L. A. Zeoly, W. P. Almeida, R.
C. Barcelos, R. C. Gomes, F. S. Fernandes, F. Coelho, Tetrahedron 2019,
75, 2063-2097; b) Y. Mo, J. Zhao, W. Chen, Q. Wang, Res. Chem.
Intermed. 2015, 41, 5869-5877; c) N. Denizot, T. Tomakinian, R. Beaud,
C. Kouklovsky, G. Vincent, Tetrahedron Lett. 2015, 56, 4413-4429; d) D.
Zhang, H. Song, Y. Qin, Acc. Chem. Res. 2011, 44, 447-457; e) D. Liu, G.
Zhao, L. Xiang, Eur. J. Org. Chem. 2010, 2010, 3975-3984; f) S. Anas, H.
B. Kagan, Tetrahedron: Asymmetry 2009, 20, 2193-2199.
[2] a) D. H. Kim, C. J. Guinosso, G. C. Buzby, D. R. Herbst, R. J. McCaully,
T. C. Wicks, R. L. Wendt, J. Med. Chem. 1983, 26, 394-403; b) S. C.
Annedi, S. P. Maddaford, J. Ramnauth, P. Renton, T. Rybak, S. Silverman,
S. Rakhit, G. Mladenova, P. Dove, J. S. Andrews, D. Zhang, F. Porreca,
Eur. J. Med. Chem. 2012, 55, 94-107; c) S. Furman, E. Nissim-Bardugo,
S. Zeeli, M. Weitman, A. Nudelman, E. Finkin-Groner, D. Moradov, H.
Shifrin, D. Schorer-Apelbaum, M. Weinstock, Bioorg. Med. Chem. Lett.
2014, 24, 2283-2287; d) P. Doan, A. Karjalainen, J. G. Chandraseelan, O.
Sandberg, O. Yli-Harja, T. Rosholm, R. Franzen, N. R. Candeias, M.
Kandhavelu, Eur. J. Med. Chem. 2016, 120, 296-303.
[3] a) R. Hocquemiller, G. Dubois, M. Leboeuf, A. Cavé, N. Kunesch, C. Riche,
A. Chiaroni, Tetrahedron Lett. 1981, 22, 5057-5060; b) C. Niemann, J. W.
Kessel, J. Org. Chem. 1966, 31, 2265-2269; c) P. J. Stephens, J.-J. Pan,
F. J. Devlin, M. Urbanová, J. Hájíček, J. Org. Chem. 2007, 72, 2508-2524;
d) Y.-T. Li, X.-D. Gao, W. Zhang, X.-J. Huang, D.-M. Zhang, R.-W. Jiang,
L. Wang, X.-Q. Zhang, W.-C. Ye, RSC Adv. 2016, 6, 59657-59660; e) L.
Horáková, S. Štolc, Gen. Pharmac. 1998, 30, 627-638; f) W.-S. Yap, C.-
Y. Gan, Y.-Y. Low, Y.-M. Choo, T. Etoh, M. Hayashi, K. Komiyama, T.-S.
Kam, J. Nat. Prod. 2011, 74, 1309-1312; g) K.-H. Lim, T.-S. Kam,
Phytochemistry 2008, 69, 558-561.
[4] a) A. Sen, K. Takenaka, H. Sasai, Org. Lett. 2018, 20, 6827-6831; b) A.
H. Aebly, T. J. Rainey, Tetrahedron Lett. 2017, 58, 3795-3799; c) Z. Lu,
S. S. Stahl, Org. Lett. 2012, 14, 1234-1237; d) F. Jiang, Z. Wu, W. Zhang,
Tetrahedron Lett. 2010, 51, 5124-5126; e) C. C. Scarborough, A. Bergant,
G. T. Sazama, I. A. Guzei, L. C. Spencer, S. S. Stahl, Tetrahedron 2009,
65, 5084-5092; f) R. Beniazza, J. Dunet, F. Robert, K. Schenk, Y. Landais,
Org. Lett. 2007, 9, 3913-3916; g) M. M. Rogers, J. E. Wendlandt, I. A.
Guzei, S. S. Stahl, Org. Lett. 2006, 8, 2257-2260; h) S. R. Fix, J. L. Brice,
S. S. Stahl, Angew. Chem. Int. Ed. 2002, 41, 164-166; i) M. Gowan, A. S.
Caillé, C. K. Lau, Synlett 1997, 1312-1314; j) R. C. Larock, T. R. Hightower,
L. A. Hasvold, K. P. Peterson, J. Org. Chem. 1996, 61, 3584-3585.
[5] In addition, two papers report modestly efficient cyclizations to form
benzofuzed-morpholine bearing a fully-substituted C2 carbon center; the
papers both use identical starting materials, see references 4a and 4b.
[6] a) H. Yamamoto, E. Ho, K. Namba, H. Imagawa, M. Nishizawa, Chem.
Eur. J. 2010, 16, 11271-11274; b) T. Seki, S. Tanaka, M. Kitamura, Org.
Lett. 2012, 14, 608-611; c) H. Yokoyama, T. Kubo, Y. Matsumura, J.
Hosokawa, M. Miyazawa, Y. Hirai, Tetrahedron 2014, 70, 9530-9535; d)
H. Yamamoto, N. Yamasaki, H. Hamauchi, S. Shiomi, I. Sasaki, K.
Seyama, Y. Mima, M. Nakano, T. Kawakami, H. Miyataka, Y. Kasai, H.
Imagawa, RSC Adv. 2015, 5, 94737-94742.
a substrate bearing a larger cyclohexene ring, 4 was produced in
89% yield. More substituted alkenes can also be utilized. These
include
both
trisubstituted
alkenes
(10-12),
tetrasubstitutedalkenes (13), and those bearing a range of
groups, including alkyl, aryl, ester, and nitrile (5-8). Many of these
examples provide indolines bearing fully substituted C2 carbons
adjacent to nitrogen.[20] As mentioned, this is a motif that appears
widely in bioactive natural products but is often challenging to
prepare (Figure 1).[1a] Benzylic substitution is also well tolerated.
With stereogenic benzylic substitution, good levels of
diastereoselectivity are observed (9); with benzylic ketones,
pseudoindoxyls arise (including those bearing fully substituted
carbon centers, 11-13). These oxidized heterocycles appear in
many natural products, but typically must be prepared by the
oxidative rearrangement of indoles.[21] It is also notable that these
cyclizations proceed via 5-exo cyclization onto an electron-
deficient alkene opposite to its inherent electronic bias.
A
range of functional groups are compatible with this
cyclization, including ethers (16, 19, 22), carbonyls (7, 11–13, 20),
nitrile (8), aryl chloride (17), and various appended heterocycles
(19–22). Unfortunately, aryl bromide is not tolerated (18). N-
hydroxy aniline bearing an allylic ether can also cyclize under
these conditions, resulting in the fused vinyl ether 19 on gram
scale.
A range of bicyclic ring topologies can also be prepared,
including fused (3b, 4–8, 15–17, 19–21, 24), spirocyclic (12), and
bridged (22) systems. Again, this starkly contrasts aza-Wacker
cyclizations, where most examples result in mono-cyclic products
(see above). There are no reported examples of bridged indolines
formed by aza-Wacker cyclization. 6-exo cyclization is also
possible. For example, bridged bicyclic hemiaminal 22 can be
prepared in this fashion; this is the first metal-catalyzed approach
to access such a scaffold. Similarly, dihydrophenanthridine 23
can be prepared via 6-exo cyclization of a biaryl substrate.[22]
Finally, the carbamate group can be varied. For example, the
Cbz-protected indoline (24) was prepared in good yield, indicating
that other protecting and leaving groups can be utilized in this
chemistry.
In summary, we have developed a general method for the
synthesis of indoline derivatives using an aza-Heck approach.
This marks the first use of aniline electrophiles and carbonate
leaving groups in such a cyclization. This reaction offers distinct
advantages over existing methods, particularly with respect to
functional group compatibility, accessible ring topologies, and
tolerance of alkene substitution. The ease of access to the
required substrates by semi-reduction of nitroarenes, along with
the highly adaptable nature of the reaction, should make this
process highly applicable to the synthesis of indoline-containing
natural products and bioactive molecules.
[7] a) K. M. Korch, D. A. Watson, Chem. Rev. 2019, 119, 8192-8228; b) B.
Vulovic, D. A. Watson, Eur. J. Org. Chem. 2017, 2017, 4996-5009; c) N.
J. Race, I. R. Hazelden, A. Faulkner, J. F. Bower, Chem. Sci. 2017, 8,
5248-5260.
[8] A. Fürstner, K. Radkowski, H. Peters, Angew. Chem. Int. Ed. 2005, 44,
2777-2781.
[9] a) H. Tsutsui, K. Narasaka, Chem. Lett. 1999, 28, 45-46; b) H. Tsutsui, K.
Narasaka, Chem. Lett. 2001, 30, 526-527; c) M. Kitamura, K. Narasaka,
Chem. Rec. 2002, 2, 268-277; d) J.-L. Zhu, Y.-H. Chan, Synlett 2008,
1250-1254; e) J.-L. Zhu, Y.-L. Su, Y.-H. Chang, I. C. Chen, C.-C. Liao,
Heterocycles 2009, 78, 369; f) S.-W. Tsao, J.-L. Zhu, Heterocycles 2012,
85, 383-401; g) M. Kitamura, D. Kudo, K. Narasaka, ARKIVOC 2006,
2006, 148-162.
[10] a) S. Zaman, M. Kitamura, K. Narasaka, Bull. Chem. Soc. Jpn. 2003, 76,
1055-1062; b) J. Ichikawa, R. Nadano, N. Ito, Chem. Commun. 2006,
4425-4427; c) A. Faulkner, J. F. Bower, Angew. Chem. Int. Ed. 2012, 51,
1675-1679; d) A. Faulkner, J. S. Scott, J. F. Bower, Chem. Commun. 2013,
49, 1521-1523; e) N. J. Race, J. F. Bower, Org. Lett. 2013, 15, 4616-4619;
f) A. Faulkner, N. J. Race, J. S. Scott, J. F. Bower, Chem. Sci. 2014, 5,
2416-2421; g) A. Faulkner, J. S. Scott, J. F. Bower, J. Am. Chem. Soc.
2015, 137, 7224-7230; h) N. J. Race, A. Faulkner, M. H. Shaw, J. F. Bower,
Chem. Sci. 2016, 7, 1508-1513; i) N. J. Race, A. Faulkner, G. Fumagalli,
T. Yamauchi, J. S. Scott, M. Ryden-Landergren, H. A. Sparkes, J. F.
Bower, Chem. Sci. 2017, 8, 1981-1985.
[11] a) J. Helaja, R. Gottlich, Chem. Commun. 2002, 720-721; b) I. Hazelden,
R., X. Ma, T. Langer, J. F. Bower, Angew. Chem. Int. Ed. 2016, 55, 11198-
11202; c) I. R. Hazelden, R. C. Carmona, T. Langer, P. G. Pringle, J. F.
Bower, Angew. Chem. Int. Ed. 2018, 57, 5124-5128; d) X. Ma, I. R.
Hazelden, T. Langer, R. H. Munday, J. F. Bower, J. Am. Chem. Soc. 2019,
141, 3356-3360.
Acknowledgements
The University of Delaware (UD) and the NIH NIGMS (NIH P20
GM104316) are gratefully acknowledged for support of this work.
Dr. Glenn P. A. Yap (UD) is thanked for X-ray Crystallography.
Data was acquired at UD on instruments obtained with the
assistance of NSF and NIH funding (NSF CHE-0421224, CHE-
0840401, CHE-1229234, and CHE-1048367; NIH P20
GM104316, P30 GM110758, S10 RR026962, and S10
OD016267).
Keywords: catalysis • palladium • indolines • aza-Heck •
[12] S. A. Shuler, G. Yin, S. B. Krause, C. M. Vesper, D. A. Watson, J. Am.
Chem. Soc. 2016, 138, 13830-13833.
cyclization
This article is protected by copyright. All rights reserved.