S. Yoshida, Y. Misawa, T. Hosoya
SHORT COMMUNICATION
wich, Trends Biotechnol. 2000, 18, 64–77; g) G. Dormán, Top.
Curr. Chem. 2001, 211, 169–225; h) J. Sumranjit, S. J. Chung,
Molecules 2013, 18, 10425–10451.
reactants: condensation of 9 with N-hydroxysuccinimide af-
forded activated ester 10, whereas treatment of 9 with oxalyl
chloride in the presence of a small amount of DMF afforded
acid chloride 11. Both of these carboxyl derivatives can react
with various nucleophiles. In addition, ester 6c was success-
fully reduced to diazidobenzyl alcohol 12[2a,6c,12] with DI-
BAL-H at –78 °C. Alcohol 12 can be either directly used or
derivatized into other types of reactants such as bromide
13.[2b] Aldehyde 14 was also obtained from 12 through oxi-
dation by using Dess–Martin periodinane.[18]
[2]
a) T. Hosoya, T. Hiramatsu, T. Ikemoto, M. Nakanishi, H.
Aoyama, A. Hosoya, T. Iwata, K. Maruyama, M. Endo, M.
Suzuki, Org. Biomol. Chem. 2004, 2, 637–641; b) T. Hosoya, T.
Hiramatsu, T. Ikemoto, H. Aoyama, T. Ohmae, M. Endo, M.
Suzuki, Bioorg. Med. Chem. Lett. 2005, 15, 1289–1294; c) T.
Hiramatsu, Y. Guo, T. Hosoya, Org. Biomol. Chem. 2007, 5,
2916–2919; d) T. Hosoya, A. Inoue, T. Hiramatsu, H. Aoyama,
T. Ikemoto, M. Suzuki, Bioorg. Med. Chem. 2009, 17, 2490–
2496; e) T. Ikemoto, T. Hosoya, K. Takata, H. Aoyama, T.
Hiramatsu, H. Onoe, M. Suzuki, M. Endo, Diabetes 2009, 58,
2802–2812; f) R. Kohta, Y. Kotake, T. Hosoya, T. Hiramatsu,
Y. Otsubo, H. Koyama, Y. Hirokane, Y. Yokoyama, H. Ike-
shoji, K. Oofusa, M. Suzuki, S. Ohta, J. Neurochem. 2010, 114,
1291–1301.
For some related methods, see: a) J. S. Cisar, B. F. Cravatt, J.
Am. Chem. Soc. 2012, 134, 10385–10388; b) L.-W. Guo, A. R.
Hajipour, K. Karaoglu, T. A. Mavlyutov, A. E. Ruoho, Chem-
BioChem 2012, 13, 2277–2289; c) Z. Li, P. Hao, L. Li, C. Y. J.
Tan, X. Cheng, G. Y. J. Chen, S. K. Sze, H.-M. Shen, S. Q. Yao,
Angew. Chem. Int. Ed. 2013, 52, 8551–8556; Angew. Chem.
2013, 125, 8713–8718; for selected reviews, see: d) D. J. Lapin-
sky, Bioorg. Med. Chem. 2012, 20, 6237–6247; e) J. Oeljeklaus,
F. Kaschani, M. Kaiser, Angew. Chem. Int. Ed. 2013, 52, 1368–
1370; Angew. Chem. 2013, 125, 1408–1410.
Furthermore, the indium-catalyzed hydrolysis[19] of
nitrile 6d by using acetaldoxime efficiently provided amide
15 (Scheme 4, c). Modified hypervalent-iodine-mediated
Hofmann rearrangement[20] of this amide in the presence
of 2-(trimethylsilyl)ethanol and subsequent removal of the
carbamate moiety by the fluoride anion[21] afforded aniline
16,[22] which can be coupled with various electrophilic part-
ners. The addition of hydroxylamine to nitrile 6d also pro-
duced amidoxime 17.[23]
[3]
Conclusions
[4]
[5]
a) E. Saxon, C. R. Bertozzi, Science 2000, 287, 2007–2010; b)
K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, Proc. Natl.
Acad. Sci. USA 2002, 99, 19–24; c) E. M. Sletten, C. R.
Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974–6998; Angew.
Chem. 2009, 121, 7108–7133.
a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2001, 40, 2004–2021; Angew. Chem. 2001, 113, 2056–2075;
b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem.
2002, 67, 3057–3064; c) V. V. Rostovtsev, L. G. Green, V. V.
Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–
2599; Angew. Chem. 2002, 114, 2708–2711; d) M. Meldal, C. W.
Tornøe, Chem. Rev. 2008, 108, 2952–3015; e) J. Lahann (Ed.),
Click Chemistry for Biotechnology and Materials Science, John
Wiley & Sons, Chichester, UK, 2009.
For applications of the diazido PAL method by other groups,
see: a) B. He, S. Velaparthi, G. Pieffet, C. Pennington, A.
Mahesh, D. L. Holzle, M. Brunsteiner, R. van Breemen, S. Y.
Blond, P. A. Petukhov, J. Med. Chem. 2009, 52, 7003–7013; b)
A. Scaffidi, G. R. Flematti, D. C. Nelson, K. W. Dixon, S. M.
Smith, E. L. Ghisalberti, Tetrahedron 2011, 67, 152–157; c) R.
Neelarapu, D. L. Holzle, S. Velaparthi, H. Bai, M. Brunsteiner,
S. Y. Blond, P. A. Petukhov, J. Med. Chem. 2011, 54, 4350–
4364; d) M. N. Gandy, A. W. Debowski, K. A. Stubbs, Chem.
Commun. 2011, 47, 5037–5039; e) A. S. Vaidya, B. Karumudi,
E. Mendonca, A. Madriaga, H. Abdelkarim, R. B. van Bree-
men, P. A. Petukhov, Bioorg. Med. Chem. Lett. 2012, 22, 5025–
5030; f) A. S. Vaidya, R. Neelarapu, A. Madriaga, H. Bai, E.
Mendonca, H. Abdelkarim, R. B. van Breemen, S. Y. Blond,
P. A. Petukhov, Bioorg. Med. Chem. Lett. 2012, 22, 6621–6627;
g) K. Kempf, A. Raja, F. Sasse, R. Schobert, J. Org. Chem.
2013, 78, 2455–2461; h) H. Abdelkarim, M. Brunsteiner, R.
Neelarapu, H. Bai, A. Madriaga, R. B. van Breemen, S. Y.
Blond, V. Gaponenko, P. A. Petukhov, ACS Chem. Biol. 2013,
8, 2538–2549.
For formal C–H functionalization through iridium-catalyzed
borylation, see: a) R. E. Maleczka Jr., F. Shi, D. Holmes, M. R.
Smith III, J. Am. Chem. Soc. 2003, 125, 7792–7793; b) D.
Holmes, G. A. Chotana, R. E. Maleczka Jr., M. R. Smith III,
Org. Lett. 2006, 8, 1407–1410; c) J. M. Murphy, X. Liao, J. F.
Hartwig, J. Am. Chem. Soc. 2007, 129, 15434–15435; d) C. C.
Tzschucke, J. M. Murphy, J. F. Hartwig, Org. Lett. 2007, 9,
761–764; e) C. W. Liskey, X. Liao, J. F. Hartwig, J. Am. Chem.
Soc. 2010, 132, 11389–11391; f) T. Liu, X. Shao, Y. Wu, Q.
In summary, practical synthetic routes to various diazido
building blocks substituted with diverse connectable groups
were established through a formal C–H azidation strategy
and several azido-friendly functional-group transforma-
tions. Given that phenotypic high-throughput screening as-
says with the use of huge chemical libraries have become
central in the early stages of drug discovery, the identifica-
tion of the targets for existing and future hit compounds
has become increasingly important as a means to expedite
high-impact drug discovery.[24] The quick preparation of ef-
fective photoaffinity labeling (PAL) probes from screening
hit compounds that has been enabled by this work is ex-
pected to provide a short avenue. Further studies on the
synthesis of new diazido building blocks, preparation of di-
azido PAL probes from bioactive compounds, and target
identifications in collaboration with biological research
groups, are now in progress.
[6]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and characterization for new com-
pounds including copies of the NMR spectra.
Acknowledgments
This work was partially supported by Platform for Drug Discovery,
Informatics, and Structural Life Science and a Grant-in-Aid for
Scientific Research on Innovative Areas, “Chemical Biology of
Natural Products” from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan.
[7]
[1] a) A. Singh, E. R. Thornton, F. H. Westheimer, J. Biol. Chem.
1962, 237, 3006–3008; b) J. Brunner, Annu. Rev. Biochem. 1993,
62, 483–514; c) F. Kotzyba-Hibert, I. Kapfer, M. Goeldner, An-
gew. Chem. Int. Ed. Engl. 1995, 34, 1296–1312; Angew. Chem.
1995, 107, 1391–1408; d) S. A. Fleming, Tetrahedron 1995, 51,
12479–12520; e) Y. Hatanaka, H. Nakayama, Y. Kanaoka, Rev.
Heteroat. Chem. 1996, 14, 213–243; f) G. Dormán, G. D. Prest-
3994
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 3991–3995