Organic Letters
Letter
(14) For recent contributions to azaborine chemistry, see:
(a) Taniguchi, T.; Yamaguchi, S. Organometallics 2010, 29, 5732−
5735. (b) Lu, J. S.; Ko, S. B.; Walters, N. R.; Kang, Y.; Sauriol, F.; Wang,
S. Angew. Chem., Int. Ed. 2013, 52, 4544−4548. (c) Neue, B.; Araneda, J.
F.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2013, 52, 9966−9969.
(d) Wang, X. Y.; Lin, H. R.; Lei, T.; Yang, D. C.; Zhuang, F. D.; Wang, J.
Y.; Yuan, S. C.; Pei, J. Angew. Chem., Int. Ed. 2013, 52, 3117−3120.
(e) Wisniewskim, S. R.; Guenther, C. L.; Argintaru, O. A.; Molander, G.
A. J. Org. Chem. 2013, 79, 365. (f) Bailey, J. A.; Haddow, M. F.; Pringle,
P. G. Chem. Commun. 2014, 50, 1432−1434. (g) Braunschweig, H.;
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
Correspondence concerning electronic structure calculations
spondence concerning X-ray crystallography should be directed
Geetharani, K.; Jimenez-Halla, J. O.; Schafer, M. Angew. Chem., Int. Ed.
̈
2014, 53, 3500−4504.
́ ̀
(15) Roman, B. I.; De Coen, L. M.; Therese F C Mortier, S.; De Ryck,
ACKNOWLEDGMENTS
T.; Vanhoecke, B. W.; Katritzky, A. R.; Bracke, M. E.; Stevens, C. V.
Bioorg. Med. Chem. 2013, 21, 5054−5063.
■
Support has been provided by the National Institutes of Health
(National Institute General Medical Sciences, R01-GM094541).
Funding for the University of Oregon Chemistry Research and
Instrumentation Services has been provided in part by the NSF
(CHE-0923589). D.A.D thanks the Robert Ramsay Chair Fund
of The University of Alabama for support.
(16) Martí-Centelles, R.; Cejudo-Marín, R.; Falomir, E.; Murga, J.;
Carda, M.; Marco, J. A. Bioorg. Med. Chem. 2013, 21, 3010−3015.
(17) There are >50 commercially available monomeric styrene
derivatives from Sigma-Aldrich.
(18) Rudebusch, G. E.; Zakharov, L. N.; Liu, S.-Y. Angew. Chem., Int.
Ed. 2013, 52, 9316−9319.
(19) The synthesis of a B-vinyl 1,2-azaborine has been carried out in
our laboratory through nucleophilic substitution of the B−Cl bond;
however, generation of the corresponding styrene-based nucleophiles
(e.g., Grignard or lithium reagents) was not attractive due to their low
functional group tolerance and difficult synthesis.
(20) Marwitz, A. J.; Matus, M. H.; Zakharov, L. N.; Dixon, D. A.; Liu,
S.-Y. Angew. Chem., Int. Ed. Engl. 2009, 48, 973−977.
(21) (a) Davan, T.; Corcoran, E. W., Jr; Sneddon, L. G. Organometallics
1983, 2, 1693−1694. (b) Kadlecek, D. E.; Carroll, P. J.; Sneddon, L. G. J.
Am. Chem. Soc. 2000, 122, 10868−10877. (c) Burgess, K.; Van der
Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C.
J. Am. Chem. Soc. 1992, 114, 9350−9359. (d) Lynch, A. T.; Sneddon, L.
G. J. Am. Chem. Soc. 1987, 109, 5867−5868. (e) Mkhalid, I. A. I.;
Coapes, R. B.; Edes, S. N.; Coventry, D. N.; Souza, F. E. S.; Thomas, R.
L.; Hall, J. J.; Bi, S.-W.; Lin, Z.; Marder, T. B. Dalton Trans. 2008, 1055−
1064. (f) Takaya, J.; Kirai, N.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133,
12980−12983. (g) Kuninobu, Y.; Iwanaga, T.; Omura, T.; Takai, K.
Angew. Chem., Int. Ed. 2013, 52, 4431.
REFERENCES
(1) Roupe, K. A.; Remsberg, C. M.; Yan
Clin. Pharmacol. 2006, 1, 81−101.
■
́
ez, J. A.; Davies, N. M. Curr.
̃
(2) For recent reviews on resveratrol, see: (a) Baur, J. A.; Sinclair, D. A.
Nat. Rev. Drug Discov 2006, 5, 493. (b) Cottart, C.-H.; Nivet-Antoine,
V.; Beaudeux, J.-L. Mol. Nutr. Food Res. 2014, 58, 7−21.
(3) For pioneering mechanistic work on the photoisomerization of
stilbenes, see: (a) Saltiel, J. J. Am. Chem. Soc. 1967, 89, 1036−1037.
(b) Saltiel, J. J. Am. Chem. Soc. 1968, 90, 6394−6400. (c) Saltiel, J.;
Waller, A. S.; Sears, D. F., Jr; Garrett, C. Z. J. Phys. Chem. 1993, 97,
2516−2522.
(4) Cheng, L. T.; Tam, W.; Stevenson, S. H.; Meredith, G. R.; Rikken,
G.; Marder, S. R. J. Phys. Chem. 1991, 95, 10631−10643.
(5) (a) Lo, S.-C.; Burn, P. L. Chem. Rev. 2007, 107, 1097−1116.
(b) Likhtenshtein, G. Stilbenes: Applications in Chemistry, Life Sciences,
and Materials science; Wiley: New York, 2010.
(6) Zaitseva, N. P.; Newby, J.; Hamel, S.; Carman, L.; Faust, M.; Lordi,
V.; Cherepy, N. J.; Stoeffl, W.; Payne, S. A. Proc. SPIE 2009, 7449,
744911.
(7) For a leading reference, see: (a) Stuber, F. A.; Ulrich, H.; Rao, D. V.;
Sayigh, A. A. R. J. Appl. Polym. Sci. 1969, 13, 2247−2255. (b) Soomro, S.
A.; Benmouna, R.; Berger, R.; Meier, H. Eur. J. Org. Chem. 2005, 2005,
3586−3593.
(8) Dorlars, A.; Schellhammer, C.-W.; Schroeder, J. Angew. Chem., Int.
Ed. Engl. 1975, 14, 665−679.
(9) For an overview, see: Meier, H. Angew. Chem., Int. Ed. Engl. 1992,
31, 1399−1420.
(10) For an overview of BN/CC isosterism, see: (a) Liu, Z.; Marder, T.
B. Angew. Chem., Int. Ed. 2008, 47, 242−244. (b) Bosdet, M. J. D.; Piers,
W. E. Can. J. Chem. 2009, 87, 8−29. (c) Campbell, P. G.; Marwitz, A. J.;
Liu, S. Y. Angew. Chem., Int. Ed. Engl. 2012, 51, 6074−6092.
(11) (a) Liu, L.; Marwitz, A. J.; Matthews, B. W.; Liu, S.-Y. Angew.
Chem., Int. Ed. 2009, 48, 6817−6819. (b) Abbey, E. R.; Zakharov, L. N.;
Liu, S.-Y. J. Am. Chem. Soc. 2010, 132, 16340−16342. (c) Abbey, E. R.;
Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2011, 133, 11508−11511.
(d) Knack, D. H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec,
M.; Liu, S.-Y.; Heider, J. Angew. Chem., Int. Ed. 2013, 52, 2599−2601.
(e) Abbey, E. R.; Liu, S.-Y. Org. Biomol. Chem. 2013, 11, 2060−2069.
(12) (a) Marwitz, A. J.; Jenkins, J. T.; Zakharov, L. N.; Liu, S.-Y. Angew.
Chem., Int. Ed. 2010, 49, 7444−7447. (b) Marwitz, A. J. V.; Lamm, A. N.;
Zakharov, L. N.; Vasiliu, M.; Dixon, D. A.; Liu, S.-Y. Chem. Sci. 2012, 3,
825−829.
(22) For an overview, see: Mkhalid, I. A.; Barnard, J. H.; Marder, T. B.;
Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890−899.
(23) The low yield can be attributed to the aryl C−Br being partially
reactive under our conditions.
(24) Lamm, A. N.; Liu, S.-Y. Mol. Biosyst. 2009, 5, 1303−1305 See the
Supporting Information for details.
(25) A possible mechanism could involve an oxidative addition of the
B−H bond to Rh followed by β-migratory insertion of the Rh−B bond
into the styrene substrate to generate an internal Rh−benzyl
intermediate. Subsequent β-hydride elimination would produce the
desired trans BN stilbene product and a Rh dihydride complex which
hydrogenates a second styrene substrate to restart the catalytic cycle.
This proposed mechanism is analogous with ones that have been
proposed for the dehydrogenative borylation reactions of pinacol
borane; see: Brown, J. M.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 1994,
116, 866−878.
(26) See the Supporting Information for details.
(27) For a structural study of 1,2-azaborines, see: Abbey, E. R.;
Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2008, 130, 7250−7252.
(28) Bis(p-methoxy)-trans-stilbene has a CC double bond length of
1.32 Å: Theocharis, C. R.; Jones, W.; Rao, C. N. R. J. Chem. Soc., Chem.
Commun. 1984, 1291−1293.
(29) This observation is consistent with the larger covalent radius of
boron (0.85 Å) vs carbon (0.75 Å); see: Pyykko, P.; Atsumi, M. Chem.
̈
Eur. J. 2009, 15, 12770−12779.
(30) Little perturbation of the absorbance λmax was observed in the
solvatachromic study.
(13) For pioneering work on monocyclic 1,2-azaborines, see:
(a) Dewar, M. J. S.; Marr, P. A. J. Am. Chem. Soc. 1962, 84, 3782.
(b) White, D. G. J. Am. Chem. Soc. 1963, 85, 3634−3636. (c) Ashe, A. J.;
Fang, X. Org. Lett. 2000, 2, 2089−2091. (d) Ashe, A. J., III; Fang, X.;
Fang, X.; Kampf, J. W. Organometallics 2001, 20, 5413−5418.
(31) Biradical states include singlet phantom state, triplet excited state,
and triplet phantom state. Lewis, F. D.; Weigel, W. J. Phys. Chem. A
2000, 104, 8146−8153.
3343
dx.doi.org/10.1021/ol501362w | Org. Lett. 2014, 16, 3340−3343