Journal of the American Chemical Society
Communication
(b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B.
Stereoselective Cyclopropanation Reactions. Chem. Rev. 2003, 103,
977.
Scheme 6. Proposed Catalytic Cycle
(3) For selected recent references, see: (a) Lindsay, V. N. G.; Lin,
W.; Charette, A. B. Experimental Evidence for the All-Up Reactive
Conformation of Chiral Rhodium(II) Carboxylate Catalysts:
Enantioselective Synthesis of cis-Cyclopropane α-Amino Acids. J.
Am. Chem. Soc. 2009, 131, 16383. (b) Lindsay, V. N. G.; Nicolas, C.;
Charette, A. B. Asymmetric Rh(II)-Catalyzed Cyclopropanation of
Alkenes with Diacceptor Diazo Compounds: p-Methoxyphenyl
Ketone as a General Stereoselectivity Controlling Group. J. Am.
Chem. Soc. 2011, 133, 8972. (c) Negretti, S.; Cohen, C. M.; Chang, J.
J.; Guptill, G. M.; Davies, H. M. L. Enantioselective dirhodium(II)-
catalyzed cyclopropanations with trimethylsilylethyl and trichloroethyl
aryldiazoacetates. Tetrahedron 2015, 71, 7415. (d) Lehner, V.; Davies,
H. M. L.; Reiser, O. Rh(II)-Catalyzed Cyclopropanation of Furans
and Its Application to the Total Synthesis of Natural Product
́
Derivatives. Org. Lett. 2017, 19, 4722. (e) Tindall, D. J.; Werle, C.;
̀
Goddard, R.; Philipps, P.; Fares, C.; Furstner, A. Structure and
̈
Reactivity of Half-Sandwich Rh(+3) and Ir(+3) Carbene Complexes.
Catalytic Metathesis of Azobenzene Derivatives. J. Am. Chem. Soc.
2018, 140, 1884.
(4) For selected recent references, see: (a) Chanthamath, S.; Iwasa,
S. Enantioselective Cyclopropanation of a Wide Variety of Olefins
Catalyzed by Ru(II)−Pheox Complexes. Acc. Chem. Res. 2016, 49,
2080. (b) Maas, G. Ruthenium-catalysed carbenoid cyclopropanation
reactions with diazo compounds. Chem. Soc. Rev. 2004, 33, 183.
(5) For selected recent references, see: (a) Taber, D. F.; Amedio, J.
C., Jr.; Sherrill, R. G. Palladium-mediated diazo insertions:
preparation of 3-alkyl-2-carbomethoxycyclopetenones. J. Org. Chem.
1986, 51, 3382. (b) Denmark, S. E.; Stavenger, R. A.; Faucher, A.-M.;
Edwards, J. P. Cyclopropanation with Diazomethane and Bis-
(oxazoline)palladium(II) Complexes. J. Org. Chem. 1997, 62, 3375.
(c) Chen, S.; Ma, J.; Wang, J. Palladium-catalyzed cyclopropanation
of electron-deficient olefins with aryldiazocarbonyl compounds.
Tetrahedron Lett. 2008, 49, 6781.
(6) (a) Nozaki, H.; Takaya, H.; Moriuti, S.; Noyori, R.
Homogeneous catalysis in the decomposition of diazo compounds
by copper chelates: Asymmetric carbenoid reactions. Tetrahedron
1968, 24, 3655. (b) Salomon, R. G.; Kochi, J. K. Copper(I) catalysis
in cyclopropanations with diazo compounds. Role of olefin
coordination. J. Am. Chem. Soc. 1973, 95, 3300.
of the reaction is speculated to arise from an intermediate
generated by a ring-opening acylation of the allylic alcohol.
Generation of a Rh-carbenoid leads to intramolecular cyclo-
propanation in excellent yield and diastereoselectivity.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental descriptions, analytical data, and NMR
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(7) (a) Huang, L.; Chen, Y.; Gao, G.-Y.; Zhang, X. P.
Diastereoselective and Enantioselective Cyclopropanation of Alkenes
Catalyzed by Cobalt Porphyrins. J. Org. Chem. 2003, 68, 8179.
(b) Chen, Y.; Fields, K. B.; Zhang, X. P. Bromoporphyrins as Versatile
Synthons for Modular Construction of Chiral Porphyrins: Cobalt-
Catalyzed Highly Enantioselective and Diastereoselective Cyclo-
propanation. J. Am. Chem. Soc. 2004, 126, 14718. (c) Chen, Y.;
Zhang, X. P. Asymmetric Cyclopropanation of Styrenes Catalyzed by
Metal Complexes of D2-Symmetrical Chiral Porphyrin: Superiority of
Cobalt over Iron. J. Org. Chem. 2007, 72, 5931. (d) Chen, Y.; Ruppel,
J. V.; Zhang, X. P. Cobalt-Catalyzed Asymmetric Cyclopropanation of
Electron-Deficient Olefins. J. Am. Chem. Soc. 2007, 129, 12074.
(e) Zhu, S.; Ruppel, J. V.; Lu, H.; Wojtas, L.; Zhang, X. P. Cobalt-
Catalyzed Asymmetric Cyclopropanation with Diazosulfones: Rigid-
ification and Polarization of Ligand Chiral Environment via Hydrogen
Bonding and Cyclization. J. Am. Chem. Soc. 2008, 130, 5042.
(8) (a) Hamaker, C. G.; Mirafzal, G. A.; Woo, L. K. Catalytic
Cyclopropanation with Iron(II) Complexes. Organometallics 2001, 20,
5171. (b) Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. Catalytic
Cyclopropanation of Alkenes Using Diazo Compounds Generated in
Situ. A Novel Route to 2-Arylcyclopropylamines. Org. Lett. 2001, 3,
2785. (c) Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H.
Olefin Cyclopropanation via Carbene Transfer Catalyzed by
Engineered Cytochrome P450 Enzymes. Science 2013, 339, 307.
(d) Allouche, E. M. D.; Al-Saleh, A.; Charette, A. B. Iron-catalyzed
synthesis of cyclopropanes by in situ generation and decomposition of
■
ACKNOWLEDGMENTS
■
We thank NIGMS (GM80442) for support. We thank Daniel
Paley (Columbia) for solving the structure of 3ai. Single crystal
X-ray diffraction was performed at the Shared Materials
Characterization Laboratory at Columbia University. Use of
the SMCL was made possible by funding from Columbia
University.
REFERENCES
■
(1) (a) Chen, D.Y.-K.; Pouwer, R. H.; Richard, J.-A. Recent advances
in the total synthesis of cyclopropane-containing natural products.
Chem. Soc. Rev. 2012, 41, 4631. (b) Talele, T. T. The “Cyclopropyl
Fragment” is a Versatile Player that Frequently Appears in Preclinical/
Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712.
(2) (a) Doyle, M. P.; Forbes, D. C. Recent Advances in Asymmetric
Catalytic Metal Carbene Transformations. Chem. Rev. 1998, 98, 911.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX