ACS Catalysis
Research Article
Gu, L.; Goddard, R.; Alcarazo, M. Synthesis and reactivity of α-
cationic phosphines: the effect of imidazolinium and amidinium
substituents. Dalton Trans 2016, 45, 1872−1876. (d) Carreras, J.;
AUTHOR INFORMATION
Corresponding Author
̌
Gopakumar, G.; Gu, L.; Gimeno, A. M.; Linowski, P.; Petuskova, J.;
■
Thiel, W.; Alcarazo, M. Polycationic Ligands in Gold Catalysis:
Synthesis and Applications of Extremely π-Acidic Catalysts. J. Am.
Chem. Soc. 2013, 135, 18815−18823. (e) Petuskova, J.; Bruns, H.;
Alcarazo, M. Cyclopropenylylidene-Stabilized Diaryl and Dialkyl
Phosphenium Cations: Applications in Homogeneous Gold Catalysis.
Angew. Chem., Int. Ed. 2011, 50, 3799−3802.
̌
ORCID
(7) (a) Dube, J. W.; Zheng, Y.; Thiel, W.; Alcarazo, M. α-Cationic
Arsines: Synthesis, Structure, Reactivity, and Applications. J. Am.
Chem. Soc. 2016, 138, 6869−6877. (b) Carreras, J.; Patil, M.; Thiel,
W.; Alcarazo, M. Exploiting the π-Acceptor Properties of Carbene-
Stabilized Phosphorus Centered Trications [L3P]3+: Applications in
Pt(II) Catalysis. J. Am. Chem. Soc. 2012, 134, 16753−16758.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Generous financial support from the Deutsche Forschungsge-
meinschaft (AL 1348/4-2 and INST 186/1237-1) is gratefully
acknowledged.
́
(8) Gu, L.; Wolf, L. M.; Zielinski, A.; Thiel, W.; Alcarazo, M. α-
Dicationic Chelating Phosphines: Synthesis and Application to the
Hydroarylation of Dienes. J. Am. Chem. Soc. 2017, 139, 4948−4953.
(9) For an additional theoretical analysis, see: García-Rodeja, Y.;
REFERENCES
■
́
Fernandez, I. Understanding the Effect of α-Cationic Phosphines and
(1) (a) Surry, D. S.; Buchwald, S. L. Biaryl Phosphane Ligands in
Palladium-Catalyzed Amination. Angew. Chem., Int. Ed. 2008, 47,
6338−6361. (b) Martin, R.; Buchwald, S. L. Palladium-Catalyzed
Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl
Phosphine Ligands. Acc. Chem. Res. 2008, 41, 1461−1473. (c) Barder,
T. E.; Biscoe, M. R.; Buchwald, S. L. Structural Insights into Active
Catalyst Structures and Oxidative Addition to (Biaryl)phosphine−
Palladium Complexes via Density Functional Theory and Exper-
imental Studies. Organometallics 2007, 26, 2183−2192.
Group 15 Analogues on π-Acid Catalysis. Organometallics 2017, 36,
460−466.
́
(10) (a) Marset, X.; Khoshnood, A.; Sotorríos, L.; Gomez-Bengoa,
́
E.; Alonso, D. A.; Ramon, D. J. Deep Eutectic Solvent Compatible
Metallic Catalysts: Cationic Pyridiniophosphine Ligands in Palladium
Catalyzed Cross-Coupling Reactions. ChemCatChem 2017, 9, 1269−
1275. (b) Tinnermann, H.; Wille, C.; Alcarazo, M. Synthesis,
Structure, and Applications of Pyridiniophosphines. Angew. Chem.,
Int. Ed. 2014, 53, 8732−8736.
́
(2) (a) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M.
(11) Lv, X.; Bao, W. A β-Keto Ester as a Novel, Efficient, and
Versatile Ligand for Copper(I)-Catalyzed C−N, C−O, and C−S
Coupling Reactions. J. Org. Chem. 2007, 72, 3863−3867.
Intramolecular [4 + 2] Cycloadditions of 1,3-Enynes or Arylalkynes
with Alkenes with Highly Reactive Cationic Phosphine Au(I)
Complexes. J. Am. Chem. Soc. 2005, 127, 6178−6179. (b) Nieto-
̈
(12) Zincke, T.; Heuser, G.; Moller, T. Uber Dinitrophenylpyr-
́
́
Oberhuber, C.; Lopez, S.; Munoz, M. P.; Cardenas, D.; Bunuel, E.;
̃
̃
idiniumchlorid und dessen Umwandlungsprodukte. Liebigs Ann. 1904,
Nevado, C.; Echavarren, A. M. Divergent Mechanisms for the Skeletal
Rearrangement and [2 + 2] Cycloaddition of Enynes Catalyzed by
Gold. Angew. Chem., Int. Ed. 2005, 44, 6146−6148.
(3) (a) Hashmi, A. S. K.; Bechem, B.; Loos, A.; Hamzic, M.;
Rominger, F.; Rabaa, H. Gold Catalysis: Biarylphosphine Ligands as
Key for the Synthesis of Dihydroisocoumarins. Aust. J. Chem. 2014,
67, 481−499. (b) Wang, W.; Hammond, G. B.; Xu, B. Ligand Effects
and Ligand Design in Homogeneous Gold(I) Catalysis. J. Am. Chem.
Soc. 2012, 134, 5697−5705. (c) Li, Q. S.; Wan, C. Q.; Zou, R. Y.; Xu,
F. B.; Song, H. B.; Wan, X. J.; Zhang, Z. Z. Gold(I) η2-Arene
333, 296−345.
(13) Furstner, A.; Seidel, G.; Kremzow, D.; Lehmann, C. W.
̈
Preparation of Metal−Imidazolidin-2-ylidene Complexes by Oxidative
Addition. Organometallics 2003, 22, 907−909.
(14) (a) Falivene, L.; Credendino, R.; Poater, A.; Petta, A.; Serra, L.;
Oliva, R.; Scarano, V.; Cavallo, L. SambVca 2. A Web Tool for
Analyzing Catalytic Pockets with Topographic Steric Maps. Organo-
metallics 2016, 35, 2286−2293. (b) Clavier, H.; Nolan, S. P. Percent
Buried Volume for Phosphine and N-heterocyclic Carbene Ligands:
Steric Properties in Organometallic Chemistry. Chem. Commun. 2010,
46, 841−861.
́
́
Complexes. Inorg. Chem. 2006, 45, 1888−1890. (d) Perez-Galan, P.;
Delpont, N.; Herrero-Gomez, E.; Maseras, F.; Echavarren, A. M.
́
(15) CCDC 1860878 (24b), 1862282 (9aa), 1862283 (9ab),
1862284 (9ac), 1862285 (9ba), 1862286 (9cb), 1862336 (11),
1862287 (12), 1862288 (13), 1862289 (14), 1862290 (17) contain
the supplementary crystallographic data for this paper. This
information can be obtained free of charge from The Cambridge
(16) (a) Chianese, A. R.; Li, X.; Janzen, M. C.; Faller, J. W.;
Crabtree, R. H. Rhodium and Iridium Complexes of N-Heterocyclic
Carbenes via Transmetalation: Structure and Dynamics. Organo-
metallics 2003, 22, 1663−1667. (b) Kelly, R. A., III; Clavier, H.;
Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.;
Hoff, C. D.; Cavallo, L.; Nolan, S. P. Determination of N-Heterocyclic
Carbene (NHC) Steric and Electronic Parameters using the
[(NHC)Ir(CO)2Cl] System. Organometallics 2008, 27, 202−210.
(17) Diebolt, O.; Fortman, G. C.; Clavier, H.; Slawin, A. M. Z.;
Metal-Arene Interactions in Dialkylbiarylphosphane Complexes of
Copper, Silver and Gold. Chem. - Eur. J. 2010, 16, 5324−5332.
(4) (a) Ferrer, S.; Echavarren, A. M. Role of σ,π-Digold(I) Alkyne
Complexes in Reactions of Enynes. Organometallics 2018, 37, 781−
786. (b) Homs, A.; Obradors, C.; Leboeuf, D.; Echavarren, A. M.
Dissecting Anion Effects in Gold(I)-Catalyzed Intermolecular Cyclo-
additions. Adv. Synth. Catal. 2014, 356, 221−228. (c) Simonneau, A.;
Jaroschik, F.; Lesage, D.; Karanik, M.; Guillot, R.; Malacria, M.;
Tabet, J. C.; Goddard, J. P.; Fensterbank, L.; Gandon, V.; Gimbert, Y.
Tracking gold acetylides in gold(I)-catalyzed cycloisomerization
reactions of enynes. Chem. Sci. 2011, 2, 2417−2422.
(5) (a) Alcarazo, M. Synthesis, Structure, and Applications of α-
Cationic Phosphines. Acc. Chem. Res. 2016, 49, 1797−1805.
(b) Alcarazo, M. α-Cationic Phosphines: Synthesis and Applications.
Chem. - Eur. J. 2014, 20, 7868−7877.
́
(6) (a) Nicholls, L. D. M.; Marx, M.; Hartung, T.; Gonzalez-
́
Escudero-Adan, E. C.; Benet-Buchholz, J.; Nolan, S. P. Steric and
́
Fernandez, E.; Golz, C.; Alcarazo, M. TADDOL-Derived Cationic
Electronic Parameters Characterizing Bulky and Electron-Rich
Phosphonites: Toward an Effective Enantioselective Synthesis of
Dialkylbiarylphosphines. Organometallics 2011, 30, 1668−1676.
[6]Helicenes via Au-Catalyzed Alkyne Hydroarylation. ACS Catal.
́
́
́
(18) See the Supplementary Information of: Mezailles, N.; Ricard,
2018, 8, 6079−6085. (b) Gonzalez-Fernandez, E.; Nicholls, L. D. M.;
̀
L.; Gagosz, F. Phosphine Gold(I) Bis-(trifluoromethanesulfonyl)-
imidate Complexes as New Highly Efficient and Air-Stable Catalysts
for the Cycloisomerization of Enynes. Org. Lett. 2005, 7, 4133−4136.
Schaaf, L. D.; Fares, C.; Lehmann, C. W.; Alcarazo, M.
Enantioselective Synthesis of [6]Carbohelicenes. J. Am. Chem. Soc.
́
́
2017, 139, 1428−1431. (c) Haldon, E.; Kozma, A.; Tinnermann, H.;
10462
ACS Catal. 2018, 8, 10457−10463