Compound A5 was synthesis according to the procedure of
A1. 1H NMR (400 MHz, Methanol-d4) δ 3.86 (m, 1H), 3.80 (d, J
= 11.8 Hz, 1H), 3.57 (m, 3H), 3.39 (m, 1H), 3.22 (t, J = 9.0 Hz,
1H), 2.76 (m, 2H), 2.33 (m, 5H), 1.59 (m, 12H), 1.28 (m, 8H),
0.89 (t, J = 6.7 Hz, 3H). 13C NMR (100 MHz, MeOD) δ 184.68,
184.48, 166.79, 166.76, 77.01, 75.24, 74.34, 73.14, 72.54, 63.20,
37.34, 37.31, 32.58, 32.42, 26.72, 26.67, 26.10, 25.09, 25.06,
23.45, 14.29. HRMS: Calcd. for C21H36N2O13Pt M+: 775.2491,
found: 775.2531.
M. Crespo, J. Quirante, J. Badia, L. Baldomà, M. Font-Bardia, M.
Cascante, Dalton Transactions. 2018, 47, 8956-8971; (r) M.
Bouché, A. Bonnefont, T. Achard, S. Bellemin-Laponnaz, Dalton
Transactions. 2018, 47, 11491-11502; (s) Z.-Y. Ma, D.-B. Wang,
X.-Q. Song, Y.-G. Wu, Q. Chen, C.-L. Zhao, J.-Y. Li, S.-H. Cheng,
J.-Y. Xu, European Journal of Medicinal Chemistry. 2018, 157,
1292-1299.
3
4
5
M. D. Hall, H. R. Mellor, R. Callaghan, T. W. Hambley, Journal of
Medicinal Chemistry. 2007, 50, 3403-3411.
Synthesis of A6
N. J. Wheate, S. Walker, G. E. Craig, R. Oun, Dalton
Transactions. 2010, 39, 8113-8127.
Compound A6 was synthesis according to the procedure of
A1. 1H NMR (400 MHz, Methanol-d4) δ 3.86 (m, 1H), 3.80 (dd, J
= 11.9, 2.2 Hz, 1H), 3.58 (m, 3H), 3.39 (m, 1H), 3.22 (t, J = 8.9
Hz, 1H), 2.76 (m, 2H), 2.32 (m, 5H), 1.59 (m, 10H), 1.29 (m,
14H), 0.89 (t, J = 6.5 Hz, 3H). 13C NMR (100 MHz, MeOD) δ
184.65, 184.47, 166.83, 166.80, 77.00, 75.23, 74.33, 73.13,
72.52, 63.18, 37.34, 32.85, 30.18, 30.15, 26.97, 26.72, 26.09,
25.09, 25.06, 23.70, 14.44. HRMS: Calcd. for C27H48N2O13Pt M+:
803.2804, found: 803.2848.
(a) K. D. Tutsch, R. Z. Arzoomanian, D. Alberti, M. B. Tombes, C.
Feierabend, H. I. Robins, D. R. Spriggs, G. Wilding, Investigational
New Drugs. 1999, 17, 63-72; (b) H. Anderson, J. Wagstaff, D.
Crowther, R. Swindell, M. J. Lind, J. McGregor, M. S. Timms, D.
Brown, P. Palmer, European Journal of Cancer & Clinical
Oncology. 1988, 24, 1471-1479; (c) O. Vondálová Blanářová, I.
Jelínková, Á. Szöőr, B. Skender, K. Souček, V. Horváth, A.
Vaculová, L. Anděra, P. Sova, J. Szöllősi, J. Hofmanová, G. Vereb,
A. Kozubík, Carcinogenesis. 2011, 32, 42-51.
6
7
T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chemical
Reviews. 2016, 116, 3436-3486.
5. Acknowledgments
This research was supported by the National Natural Science
Foundation of China (Grants 21572106, and 21877063).
(a) E. Wexselblatt,D. Gibson, Journal of Inorganic Biochemistry.
2012, 117, 220-229; (b) M. D. Hall,T. W. Hambley, Coordination
Chemistry Reviews. 2002, 232, 49-67; (c) A. V. Klein,T. W.
Hambley, Chemical Reviews. 2009, 109, 4911-4920.
References and notes
8
G. H. Christian, A. N. Alexey, M. A. Shaheen, J. D. Paul, K. K.
Bernhard, Current Medicinal Chemistry. 2008, 15, 2574-2591.
D. Hanahan,Robert A. Weinberg, Cell. 2011, 144, 646-674.
1
(a) L. Kelland, Nature Reviews Cancer. 2007, 7, 573-584; (b)
S.P.Fricker, Dalton Transactions. 2007, 43, 4903-4917.
9
2
(a) C. K. J. Chen, J. Z. Zhang, J. B. Aitken, T. W. Hambley, Journal
of Medicinal Chemistry. 2013, 56, 8757-8764; (b) J. Banfić, A. A.
Legin, M. A. Jakupec, M. Galanski, B. K. Keppler, European
Journal of Inorganic Chemistry. 2013, 2014, 484-492; (c) Y. Yuan,
R. T. K. Kwok, B. Z. Tang, B. Liu, Journal of the American
Chemical Society. 2014, 136, 2546-2554; (d) Y.-R. Zheng, K.
Suntharalingam, T. C. Johnstone, H. Yoo, W. Lin, J. G. Brooks, S.
J. Lippard, Journal of the American Chemical Society. 2014, 136,
8790-8798; (e) H. P. Varbanov, S. Göschl, P. Heffeter, S. Theiner,
A. Roller, F. Jensen, M. A. Jakupec, W. Berger, M. Galanski, B. K.
Keppler, Journal of Medicinal Chemistry. 2014, 57, 6751-6764; (f)
Z. Xu, Z. Wang, S.-M. Yiu, G. Zhu, Dalton Transactions. 2015, 44,
19918-19926; (g) R. Raveendran, J. P. Braude, E. Wexselblatt, V.
Novohradsky, O. Stuchlikova, V. Brabec, V. Gandin, D. Gibson,
Chemical Science. 2016, 7, 2381-2391; (h) M. Bouché, G. Dahm,
M. Wantz, S. Fournel, T. Achard, S. Bellemin-Laponnaz, Dalton
Transactions. 2016, 45, 11362-11368; (i) J. Mayr, P. Heffeter, D.
Groza, L. Galvez, G. Koellensperger, A. Roller, B. Alte, M. Haider,
W. Berger, C. R. Kowol, B. K. Keppler, Chemical Science. 2017, 8,
2241-2250; (j) S. Q. Yap, C. F. Chin, A. H. Hong Thng, Y. Y. Pang,
H. K. Ho, W. H. Ang, ChemMedChem. 2016, 12, 300-311; (k) B.
W. J. Harper, E. Petruzzella, R. Sirota, F. F. Faccioli, J. R. Aldrich-
Wright, V. Gandin, D. Gibson, Dalton Transactions. 2017, 46,
7005-7019; (l) X. Qin, L. Fang, F. Chen, S. Gou, European Journal
of Medicinal Chemistry. 2017, 137, 167-175; (m) J. Zhao, W. Hua,
G. Xu, S. Gou, Journal of Inorganic Biochemistry. 2017, 176, 175-
180; (n) E. Gabano, M. Ravera, I. Zanellato, S. Tinello, A. Gallina,
B. Rangone, V. Gandin, C. Marzano, M. G. Bottone, D. Osella,
Dalton Transactions. 2017, 46, 14174-14185; (o) W. Hu, J. Zhao,
W. Hua, S. Gou, Metallomics. 2018, 10, 346-359; (p) S. Savino, V.
Gandin, J. D. Hoeschele, C. Marzano, G. Natile, N. Margiotta,
Dalton Transactions. 2018, 47, 7144-7158; (q) M. Solé, C. Balcells,
10 (a) M. Patra, T. C. Johnstone, K. Suntharalingam, S. J. Lippard,
Angewandte Chemie International Edition. 2016, 55, 2550-2554;
(b) Y. Chen, M. J. Heeg, P. G. Braunschweiger, W. Xie, P. G.
Wang, Angewandte Chemie International Edition. 1999, 38, 1768-
1769; (c) P. Liu, Y. Lu, X. Gao, R. Liu, D. Zhang-Negrerie, Y. Shi,
Y. Wang, S. Wang, Q. Gao, Chemical Communications. 2013, 49,
2421-2423; (d) H. Li, X. Gao, R. Liu, Y. Wang, M. Zhang, Z. Fu,
Y. Mi, Y. Wang, Z. Yao, Q. Gao, European Journal of Medicinal
Chemistry. 2015, 101, 400-408; (e) M. Patra, S. G. Awuah, S. J.
Lippard, Journal of the American Chemical Society. 2016, 138,
12541-12551.
11 (a) Q. Wang, Z. Huang, J. Ma, X. Lu, L. Zhang, X. Wang, P. George
Wang, Dalton Transactions. 2016, 45, 10366-10374; (b) J. Ma, Q.
Wang, X. Yang, W. Hao, Z. Huang, J. Zhang, X. Wang, P. G. Wang,
Dalton Transactions. 2016, 45, 11830-11838; (c) J. Ma, X. Yang, W.
Hao, Z. Huang, X. Wang, P. G. Wang, European Journal of
Medicinal Chemistry. 2017, 128, 45-55.
12 J. Ma, Q. Wang, Z. Huang, X. Yang, Q. Nie, W. Hao, P. G. Wang,
X. Wang, Journal of Medicinal Chemistry. 2017, 60, 5736-5748.
13 (a) B. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Nature
Reviews Cancer. 2011, 11, 671; (b) R. A. Gatenby, E. T. Gawlinski,
A. F. Gmitro, B. Kaylor, R. J. Gillies, Cancer Research. 2006, 66,
5216; (c) Y. Song, K. Suntharalingam, J. S. Yeung, M. Royzen, S. J.
Lippard, Bioconjugate Chemistry. 2013, 24, 1733-1740; (d) Q.
Cheng, H. Shi, H. Wang, Y. Min, J. Wang, Y. Liu, Chemical
Communications. 2014, 50, 7427-7430; (e) R. K. Pathak, S.
Marrache, J. H. Choi, T. B. Berding, S. Dhar, Angewandte Chemie
International Edition. 2014, 53, 1963-1967.
14
M. Wu, H. Li, R. Liu, X. Gao, M. Zhang, P. Liu, Z. Fu, J. Yang, D.
Zhang-Negrerie, Q. Gao, European Journal of Medicinal Chemistry.
2016, 110, 32-42.