Chemistry of Materials
Article
Emitting Dopants: Highly Efficient Deep-Blue Emission in Organic
Light-Emitting Devices. Adv. Funct. Mater. 2014, 24 (14), 2064−2071.
(17) Zhang, Q.; Kuwabara, H.; Potscavage, W. J., Jr.; Huang, S.;
Hatae, Y.; Shibata, T.; Adachi, C. Anthraquinone-based intramolecular
charge-transfer compounds: computational molecular design, ther-
mally activated delayed fluorescence, and highly efficient red
electroluminescence. J. Am. Chem. Soc. 2014, 136 (52), 18070−18081.
(18) Mayr, C.; Lee, S. Y.; Schmidt, T. D.; Yasuda, T.; Adachi, C.;
REFERENCES
■
(1) Forrest, S. R.; Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov,
A.; Sibley, S.; Thompson, M. E. Highly efficient phosphorescent
emission from organic electroluminescent device. Nature 1998, 395,
(2) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.;
Lussem, B.; Leo, K. White organic light-emitting diodes with
fluorescent tube efficiency. Nature 2009, 459, 234−238.
(3) McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim,
D. Y.; So, F.; Rinzler, A. G. Low-Voltage, Low-Power, Organic Light-
Emitting Transistors for Active Matrix Displays. Science 2011, 332,
(4) Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.;
Adachi, C. Thermally activated delayed fluorescence from Sn(4+)-
porphyrin complexes and their application to organic light emitting
diodes–a novel mechanism for electroluminescence. Adv. Mater. 2009,
(5) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.;
Zhang, L.; Huang, W. Thermally activated delayed fluorescence
materials towards the breakthrough of organoelectronics. Adv. Mater.
2014, 26 (47), 7931−7958.
(6) Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar,
K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Triplet
harvesting with 100% efficiency by way of thermally activated delayed
fluorescence in charge transfer OLED emitters. Adv. Mater. 2013, 25
(7) Leitl, M. J.; Krylova, V. A.; Djurovich, P. I.; Thompson, M. E.;
Yersin, H. Phosphorescence versus Thermally Activated Delayed
Fluorescence. Controlling Singlet−Triplet Splitting in Brightly
Emitting and Sublimable Cu(I) Compounds. J. Am. Chem. Soc.
(8) Wang, H.; Xie, L.; Peng, Q.; Meng, L.; Wang, Y.; Yi, Y.; Wang, P.
Novel Thermally Activated Delayed Fluorescence Materials−Thio-
xanthone Derivatives and Their Applications for Highly Efficient
OLEDs. Adv. Mater. 2014, 26 (30), 5198−5204.
(9) Sun, J. W.; Lee, J. H.; Moon, C. K.; Kim, K. H.; Shin, H.; Kim, J.
J. A fluorescent organic light-emitting diode with 30% external
quantum efficiency. Adv. Mater. 2014, 26 (32), 5684−5688.
(10) Liu, X.-K.; Chen, Z.; Zheng, C.-J.; Liu, C.-L.; Lee, C.-S.; Li, F.;
Ou, X.-M.; Zhang, X.-H. Prediction and Design of Efficient Exciplex
Emitters for High-Efficiency, Thermally Activated Delayed-Fluores-
cence Organic Light-Emitting Diodes. Adv. Mater. 2015, 27 (14),
(11) Zhang, D.; Duan, L.; Li, Y.; Zhang, D.; Qiu, Y. Highly efficient
and color-stable hybrid warm white organic light-emitting diodes using
a blue material with thermally activated delayed fluorescence. J. Mater.
Chem. C 2014, 2 (38), 8191−8197.
(12) Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y.
Highly efficient near-infrared organic light-emitting diode based on a
butterfly-shaped donor-acceptor chromophore with strong solid-state
fluorescence and a large proportion of radiative excitons. Angew.
Chem., Int. Ed. 2014, 53 (8), 2119−2123.
(13) Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.;
Shen, F.; Wang, Y.; Yang, B.; Ma, Y. Employing ∼100% Excitons in
OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local
and Charge-Transfer Excited State. Adv. Funct. Mater. 2014, 24 (11),
(14) Zheng, C.-J.; Wang, J.; Ye, J.; Lo, M.-F.; Liu, X.-K.; Fung, M.-K.;
Zhang, X.-H.; Lee, C.-S. Novel Efficient Blue Fluorophors with Small
Singlet-Triplet Splitting: Hosts for Highly Efficient Fluorescence and
Phosphorescence Hybrid WOLEDs with Simplified Structure. Adv.
Mater. 2013, 25 (15), 2205−2211.
Brutting, W. Efficiency Enhancement of Organic Light-Emitting
̈
Diodes Incorporating a Highly Oriented Thermally Activated Delayed
Fluorescence Emitter. Adv. Funct. Mater. 2014, 24 (33), 5232−5239.
(19) Zhang, Q.; Komino, T.; Huang, S.; Matsunami, S.; Goushi, K.;
Adachi, C. Triplet Exciton Confinement in Green Organic Light-
Emitting Diodes Containing Luminescent Charge-Transfer Cu(I)
Complexes. Adv. Funct. Mater. 2012, 22 (11), 2327−2336.
(20) Masui, K.; Nakanotani, H.; Adachi, C. Analysis of exciton
annihilation in high-efficiency sky-blue organic light-emitting diodes
with thermally activated delayed fluorescence. Org. Electron. 2013, 14
(21) Han, C.; Zhu, L.; Li, J.; Zhao, F.; Zhang, Z.; Xu, H.; Deng, Z.;
Ma, D.; Yan, P. Highly Efficient Multifluorenyl Host Materials with
Unsymmetrical Molecular Configurations and Localized Triplet States
for Green and Red Phosphorescent Devices. Adv. Mater. 2014, 26
(22) Kan, W.; Zhu, L.; Wei, Y.; Ma, D.; Sun, M.; Wu, Z.; Huang, W.;
Xu, H. Phosphine oxide-jointed electron transporters for the reduction
of interfacial quenching in highly efficient blue PHOLEDs. J. Mater.
Chem. C 2015, 3 (21), 5430−5439.
(23) Baldo, M. A.; Adachi, C.; Forrest, S. R. Transient analysis of
organic electrophosphorescence. II. Transient analysis of triplet-triplet
annihilation. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62 (16),
(24) Reineke, S.; Walzer, K.; Leo, K. Triplet-exciton quenching in
organic phosphorescent light-emitting diodes with Ir-based emitters.
Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75 (12), 125328.
(25) Kim, B. S.; Lee, J. Y. Engineering of Mixed Host for High
External Quantum Efficiency above 25% in Green Thermally Activated
Delayed Fluorescence Device. Adv. Funct. Mater. 2014, 24 (25),
(26) Kim, B. S.; Lee, J. Y. Phosphine oxide type bipolar host material
for high quantum efficiency in thermally activated delayed fluorescent
device. ACS Appl. Mater. Interfaces 2014, 6 (11), 8396−400.
(27) Im, Y.; Lee, J. Y. Above 20% External Quantum Efficiency in
Thermally Activated Delayed Fluorescence Device Using Furodipyr-
idine-Type Host Materials. Chem. Mater. 2014, 26 (3), 1413−1419.
(28) Zhang, D.; Duan, L.; Li, C.; Li, Y.; Li, H.; Zhang, D.; Qiu, Y.
High-Efficiency Fluorescent Organic Light-Emitting Devices Using
Sensitizing Hosts with a Small Singlet−Triplet Exchange Energy. Adv.
Mater. 2014, 26 (29), 5050−5055.
(29) Cho, Y. J.; Yook, K. S.; Lee, J. Y. A universal host material for
high external quantum efficiency close to 25% and long lifetime in
green fluorescent and phosphorescent OLEDs. Adv. Mater. 2014, 26
(30) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Highly efficient organic light-emitting diodes from delayed fluo-
rescence. Nature 2012, 492 (7428), 234−238.
(31) Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C.
Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone
Derivatives for Full-Color Delayed Fluorescence OLEDs. Angew.
Chem., Int. Ed. 2014, 53 (25), 6402−6406.
(32) Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.; Adachi, C. A
six-carbazole-decorated cyclophosphazene as a host with high triplet
energy to realize efficient delayed-fluorescence OLEDs. Mater. Horiz.
(33) Cho, Y. J.; Yook, K. S.; Lee, J. Y. Cool and warm hybrid white
organic light-emitting diode with blue delayed fluorescent emitter both
as blue emitter and triplet host. Sci. Rep. 2015, 5, 7859.
(34) Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.;
Adachi, C. Design of efficient thermally activated delayed fluorescence
(15) Hofbeck, T.; Monkowius, U.; Yersin, H. Highly Efficient
Luminescence of Cu(I) Compounds: Thermally Activated Delayed
Fluorescence Combined with Short-Lived Phosphorescence. J. Am.
Chem. Soc. 2015, 137 (1), 399−404.
(16) Hu, J.-Y.; Pu, Y.-J.; Satoh, F.; Kawata, S.; Katagiri, H.; Sasabe,
H.; Kido, J. Bisanthracene-Based Donor−Acceptor-type Light-
I
Chem. Mater. XXXX, XXX, XXX−XXX