Macromolecules
Article
5746. (e) Erker, G. Dalton Trans. 2011, 40, 7475−7483. (f) Stephan,
D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46−76. (g) Stephan,
D. W. Dalton Trans. 2009, 3129−3136. (h) Stephan, D. W. Org.
Biomol. Chem. 2008, 6, 1535−1539.
(2) Selected recent examples on activation of small molecules by
FLPs: (a) Lawrence, E. J.; Oganesyan, V. S.; Hughes, D. L.; Ashley, A.
E.; Wildgoose, G. G. J. Am. Chem. Soc. 2014, 136, 6031−6036.
(b) Dobrovetsky, R.; Stephan, D. W. J. Am. Chem. Soc. 2013, 135,
4974−4977. (c) Sajid, M.; Elmer, L.-M.; Rosorius, C.; Daniliuc, C. G.;
Grimme, S.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2013, 52,
2243−2246. (d) Appelt, C.; Slootweg, J. C.; Lammertsma, K.; Uhl, W.
Angew. Chem., Int. Ed. 2013, 52, 4256−4259. (e) Bertini, F.;
Lyaskovskyy, V.; Timmer, B. J. J.; de Kanter, F. J. J.; Lutz, M.;
Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K. J. Am. Chem. Soc. 2012,
Polymerization kinetics were performed on a prototype
system most suitable for this study, the polymerization of 2-VP
by the ItBu/Al(C6F5)3 FLP. The kinetic data revealed that the
polymerization follows a zero-order dependence on monomer
concentration and a first-order dependence on initiator (LB)
and activator (LA) concentrations. Such kinetics imply a
bimolecular, activated monomer propagation mechanism in
that the C−C bond forming step via intermolecular Michael
addition of the propagating species to the LA-activated
monomer is the rate-limiting step, and the release of the LA
catalyst from its coordinated last inserted monomer unit in the
growing polymer chain to the incoming monomer is relatively
fast.
The Lewis pair polymerization of conjugated polar alkenes
by CLAs or FLPs is accompanied by competing chain-
termination side reactions. The two possible chain-termination
pathways were proposed: one that proceeds via intramolecular
backbiting cyclization involving nucleophilic attack of the
activated antepenultimate ester group of the growing chain by
the C-ester enolate active chain end to generate a cyclic β-
ketoester chain end and the other that proceeds via
intramolecular backbiting cyclization involving nucleophilic
attack of the activated adjacent ester group of the growing
chain by the O-ester enolate active chain end to generate a δ-
valerolactone chain end. Analyses of low molecular weight
polymer samples produced by IMes/Al(C6F5)3 with MALDI-
TOF MS spectroscopy provided evidence for such chain
termination side reactions but cannot conclusively state which
process is operative in this polymerization. On the other hand,
DFT calculations showed that the formation of cyclic δ-
valerolactone-terminated chain ends is kinetically favored
(lower energy barrier by 12.5 kcal/mol) but thermodynamically
disfavored (less stable by 20.1 kcal/mol), as compared to the
formation of β-ketoester-terminated chain ends.
134, 201−204. (f) Schafer, A.; Reiβmann, M.; Schafer, A.; Saak, W.;
̈
̈
Haase, D.; Muller, T. Angew. Chem., Int. Ed. 2011, 50, 12636−12638.
̈
(g) Lu, Z.; Cheng, Z.; Chen, Z.; Weng, L.; Li, Z. H.; Wang, H. Angew.
Chem., Int. Ed. 2011, 50, 12227−122231. (h) Ekkert, O.; Kehr, G.;
Frohlich, R.; Erker, G. J. Am. Chem. Soc. 2011, 133, 4610−4616.
̈
(i) Marwitz, A. J. V.; Dutton, J. L.; Mercier, L. G.; Piers, W. E. J. Am.
Chem. Soc. 2011, 133, 10026−10029. (j) Appelt, C.; Westenberg, H.;
Bertini, F.; Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K.; Uhl, W.
Angew. Chem., Int. Ed. 2011, 50, 3925−3928. (k) Grimme, S.; Kruse,
H.; Goerigk, L.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 1402−1405.
́
(l) Ines, B.; Holle, S.; Goddard, R.; Alcarazo, M. Angew. Chem., Int. Ed.
2010, 49, 8389−8391. (m) Momming, C. M.; Otten, E.; Kehr, G.;
̈
Frohlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int.
̈
Ed. 2009, 48, 6643−6646. (n) Chase, P. A.; Stephan, D. W. Angew.
Chem., Int. Ed. 2008, 47, 7433−7437. (o) Holschumacher, D.;
Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. Angew. Chem.,
Int. Ed. 2008, 47, 7428−7432. (p) Sumerin, V.; Schulz, F.; Nieger, M.;
Leskela, M.; Repo, T.; Rieger, B. Angew. Chem., Int. Ed. 2008, 47,
6001−6003.
(3) Selected recent examples on catalytic hydrogenation by FLPs:
(a) Chernichenko, K.; Madarasz, A.; Papai, I.; Nieger, M.; Leskela, M.;
́ ́
̈
Repo, T. Nat. Chem. 2013, 5, 718−723. (b) Greb, L.; Daniliuc, C.-G.;
Bergander, K.; Paradies, J. Angew. Chem., Int. Ed. 2013, 52, 5876−
5879. (c) Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo, C. B.;
Grimme, S.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 7492−
7495. (d) Chen, D.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed.
ASSOCIATED CONTENT
* Supporting Information
Single-crystal X-ray diffraction data, computational details, and
additional figures. This material is available free of charge via
■
S
2010, 49, 9475−9478. (e) Ero
̋
s, G.; Mehdi, H.; Pap
́
ai, I.; Rokob, T. A.;
Kiraly, P.; Tarkanyi, G.; Soos
́
́
́
́
, T. Angew. Chem., Int. Ed. 2010, 49,
6559−6563. (f) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. J. Am.
Chem. Soc. 2010, 132, 3301−3303. (g) Ashley, A. W.; Thompson, A.
L.; O’Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839−9843.
AUTHOR INFORMATION
Corresponding Authors
(h) Axenov, K. V.; Kehr, G.; Frohlich, R.; Erker, G. J. Am. Chem.
̈
■
Soc. 2009, 131, 3454−3455.
(4) Selected recent examples on new reactivity/reaction development
with FLPs: (a) Wang, X.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am.
Chem. Soc. 2014, 136, 3293−3303. (b) Rocchigiani, L.; Giancaleoni,
G.; Zuccaccia, C.; Macchioni, A. J. Am. Chem. Soc. 2014, 136, 112−
Notes
The authors declare no competing financial interest.
́
115. (c) Menard, G.; Hatnean, J. A.; Cowley, H. J.; Lough, A. J.;
Rawson, J. M.; Stephan, D. W. J. Am. Chem. Soc. 2013, 135, 6446−
ACKNOWLEDGMENTS
6449. (d) Sajid, M.; Kehr, G.; Wiegand, T.; Eckert, H.; Schwickert, C.;
■
Pottgen, R.; Cardenas, A. J. P.; Warren, T. H.; Frohlich, R.; Daniliuc,
̈
̈
This work was supported by the National Science Foundation
(NSF-1150792) for the study carried out at Colorado State
University. L.C. thanks the HPC team of Enea for using the
ENEA-GRID and the HPC facilities CRESCO in Portici, Italy.
We thank Boulder Scientific Co. for the research gift of
B(C6F5)3 and Dr. Brian Newell for assistance on X-ray
structural analysis.
C. G.; Erker, G. J. Am. Chem. Soc. 2013, 135, 8882−8895.
(e) Cardenas, A. J. P.; Culotta, B. J.; Warren, T. H.; Grimme, S.;
Stute, A.; Frohlich, R.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed. 2011,
̈
50, 7567−7571. (f) Chapman, A. M.; Haddow, M. F.; Wass, D. F. J.
́
Am. Chem. Soc. 2011, 133, 8826−8829. (g) Menard, G.; Stephan, D.
W. Angew. Chem., Int. Ed. 2011, 50, 8396−8399. (h) Zhao, X.;
Stephan, D. W. J. Am. Chem. Soc. 2011, 133, 12448−12450.
́
(i) Menard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796−
REFERENCES
1797. (j) Alcarazo, M.; Gomez, C.; Holle, S.; Goddard, R. Angew.
Chem., Int. Ed. 2010, 49, 5788−5791. (k) Berkefeld, A.; Piers, W. E.;
■
(1) Selected reviews: (a) Stephan, D. W.; Erker, G. Chem. Sci. 2014,
5, 2625−2641. (b) Frustrated Lewis Pairs I & II; Stephan, D. W.,
Erker, G., Eds.; Topics in Current Chemistry; Springer: New York,
2013, Vols. 332 and 334. (c) Erker, G. Pure Appl. Chem. 2012, 84,
2203−2217. (d) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740−
Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660−10661. (l) Momming,
̈
C. M.; Kehr, G.; Wibbeling, B.; Frohlich, R.; Schirmer, B.; Grimme, S.;
Erker, G. Angew. Chem., Int. Ed. 2010, 49, 2414−2417.
(5) Chen, E. Y.-X. Top. Curr. Chem. 2013, 334, 239−260.
̈
I
dx.doi.org/10.1021/ma5019389 | Macromolecules XXXX, XXX, XXX−XXX