216
K. Kumari, K. N. Singh
LETTER
(10) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2008,
47, 2304.
(11) Eissen, M.; Metzger, J. O.; Schmidt, E.; Schneidewind, U.
Angew. Chem. Int. Ed. 2002, 41, 414.
ing methods for the synthesis of agriculturally important
compounds.
(12) (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025.
(b) Cave, G. W. V.; Raston, C. L.; Scott, J. L. Chem.
Commun. 2001, 2159. (c) Metzger, J. O. In Organic
Synthesis Highlights V; Schmalz, H.-G.; Wirth, T., Eds.;
Wiley-VCH: Weinheim, 2003, 82.
Acknowledgment
We are thankful to the Department of Biotechnology, New Delhi for
financial assistance.
(13) (a) Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett.
2013, 15, 4202. (b) Raghuvanshi, D. S.; Gupta, A. K.; Singh,
K. N. Org. Lett. 2012, 14, 4326. (c) Singh, N.; Allam, B. K.;
Raghuvanshi, D. S.; Singh, K. N. Adv. Synth. Catal. 2013,
355, 1840. (d) Kumari, K.; Raghuvanshi, D. S.; Singh, K. N.
Tetrahedron 2013, 69, 82.
(14) Poje, A. J.; Newallis, P. E. US 3820975, 1974.
(15) Arcadi, A.; Bianchi, G.; Giuseppe, S. D.; Marinelli, F. Green
Chem. 2003, 5, 64.
References and Notes
(1) (a) Cremlyn, R. J. An Introduction to Organosulfur
Chemistry; John Wiley and Sons: Chichester, 1996.
(b) Metzner, P.; Thuillier, A. Sulfur Reagents in Organic
Synthesis; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.,
Eds.; Academic Press: London, 1994. (c) Bichler, P.; Love,
J. In Topics of Organometallic Chemistry; Vol. 31; Vigalok,
A., Ed.; Springer: Heidelberg, 2010, 39.
(2) Tawada, H.; Sugiyama, Y.; Ikeda, H.; Yamamoto, Y.;
Meguro, K. Chem. Pharm. Bull. 1990, 38, 1238.
(3) De Martino, G.; Edler, M. C.; La Regina, G.; Cosuccia, A.;
Barbera, M. C.; Barrow, D.; Nicholson, R. I.; Chiosis, G.;
Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. J. Med.
Chem. 2006, 49, 947.
(4) Kadlor, S. W.; Kalish, V. J.; Davies, J. F.; Shetty, B. V.;
Fritz, J. E.; Appelt, K.; Burgess, J. A.; Campanale, K. M.;
Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.; Hatch,
S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.;
Muesing, M. A.; Patick, A. K.; Reich, S. H.; Su, K. S.;
Tatlock, J. H. J. Med. Chem. 1997, 40, 3979.
(5) (a) Shen, X. M.; Dryhurst, G. J. Med. Chem. 1996, 39, 2018.
(b) Shen, X. M.; Dryhurst, G. Chem. Res. Toxicol. 1996, 9,
751. (c) Okuyama, K.; Kiuchi, S.; Okamoto, M.; Narita, H.;
Kudo, Y. Eur. J. Pharmacol. 2000, 398, 209.
(6) (a) Patai, S. The Chemistry of the Thiol Group; John Wiley
and Sons: New York, 1974, Parts I and II, Vol. 2. (b) Barret,
G. C. Thiols, In Comprehensive Organic Chemistry; Jones,
D. N., Ed.; Pergamon Press: Oxford, 1979.
(7) (a) Tseng, S. L.; Yang, T. K. Tetrahedron: Asymmetry 2005,
16, 773. (b) Haque, M. B.; Roberts, B. P. Tetrahedron Lett.
1996, 37, 9123.
(16) General Experimental Procedure
The requisite thiol 1 (1.2 mmol), cyclic 1,3-dione 2 (1mmol),
and anhydrous FeCl3 (15 mol%) were placed in a round-
bottomed flask and then stirred at r.t. to 50 °C for the
specified time (Table 2). After completion of the reaction (as
monitored by TLC), H2O was added to the reaction mixture,
and then it was extracted with EtOAc (3 × 10 mL). The
combined organic phases were washed with brine, dried over
anhydrous Na2SO4, filtered, and concentrated on a rotary
evaporator. The crude product was purified by column
chromatography using EtOAc–hexane as eluent to afford
pure product 3.
Representative Data
5,5-Dimethyl-3-(phenylthio)cyclohex-2-enone (3a)
Solid; mp 50–52 °C (lit.17 mp 50–51 °C). FTIR (KBr): 2955,
2868, 1662, 1574, 1454, 1305, 1279, 1239, 1021, 716 cm–1.
1H NMR (300 MHz, CDCl3): δ = 1.07 (s, 6 H), 2.22 (s, 2 H),
2.39 (s, 2 H), 5.47 (s, 1 H), 7.40–7.48 (m, 5 H) ppm. 13
C
NMR (75 MHz, CDCl3): δ = 27.8, 34.1, 43.7, 50.9, 119.6,
127.9, 129.7, 130.0, 135.3, 164.8, 196.1 ppm.
3-(Phenylthio)cyclohex-2-enone (3h)
Solid; mp 44–45 °C (lit.18 mp 43–44 °C). FTIR (KBr): 2950,
2868, 1655, 1580, 1454, 1310, 1280, 1240, 1020, 710 cm–1.
1H-NMR (300 MHz, CDCl3): δ = 1.99–2.03 (m, 2 H), 2.32–
2.36 (m, 2 H), 2.48–2.51 (m, 2 H), 5.47 (s, 1 H), 7.38–7.47
(m, 5 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 22.8, 29.8,
36.8, 120.5, 127.6, 129.5, 129.8, 135.1, 166.5, 195.6 ppm.
(17) Campaigne, E.; Leal, J. R. J. Am. Chem. Soc. 1954, 76, 1272.
(18) Konstantinova, O.; Sarabèr, F. C. E.; Melguizo, E.; Jansen,
B. J. M.; Groot, A. Tetrahedron 2006, 62, 1749.
(8) Kondo, T.; Mitsdo, M. Chem. Rev. 2000, 100, 3205.
(9) (a) Hegedus, L. L.; McCabe, R. W. In Catalyst Poisoning;
Marcel Dekker: New York, 1984. (b) Hutton, A. T. In
Comprehensive Coordination Chemistry; Vol. 5; Wilkinson,
G.; Gillard, R. D.; McCleverty, J. A., Eds.; Pergamon:
Oxford, 1984, 1151.
Synlett 2014, 25, 213–216
© Georg Thieme Verlag Stuttgart · New York