4
Kotha, A. C. Deb, R. V. Kumar, Bioorg. Med. Chem. Lett. 2005,
15, 1039.
5.
6.
B. M. Trost, G. M. Schroeder, J. Org. Chem. 65, 1569 (2000).
H. Cui, G. F. Ruda, J. Carrero-Lérida, L. M. Ruiz-Pérez, I. H.
Gilbert, D. González-Pacanowska, Eur. J. Med. Chem. 2010, 45,
5140.
7.
8.
9.
B. S. Jursic, E. D. Stevens, Tetrahedron Lett., 2003, 44, 2203.
B. S. Jursic, D. M. Neumann, Tetrahedron Lett., 2001, 42, 4103.
D. B. Ramachary, M. Kishor, Y. V. Reddy, Eur. J. Org. Chem.
2008, 975.
10. For reviews, see: a) Q. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev.
2015, 44, 2305; b) K. Shimizu, Catal. Sci. Technol. 2015, 5, 1412;
c) S. Bahn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M.
Beller. ChemCatChem. 2011, 3, 1853; d) G. Guillena, D. J
Ramon, M. Yus, Chem .Rev. 2010, 110, 1611; e) M. S. A. Hamid,
P. A. Slatford, J. M. J. Williams. Adv. Synth. Catal. 2007, 349,
1555.
11. For recent examples including our recent works, see: a) S. M. A.
H. Siddiki, K. Kon, K. Shimizu, Green Chem. 2015, 17, 173–177;
c) S. Bartolucci, M. Mari, A. Bedini, G. Piersanti, G. Spadoni, J.
Org. Chem. 2015, 80, 3217-3222; d) Z.-Q. Rong, Y. Zhang, R. H.
B. Chua, H.-J. Pan, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 4944-
4947; e) C. Chaudhari, S. M. A. H. Siddiki, K. Kon, A. Tomita, Y.
Tai, K. Shimizu, Catal. Sci. Technol. 2014, 4, 1064-1069; f) A.
Montagut-Romans, M. Boulven, M. Lemaire, F. Popowycz, New
J. Chem. 2014, 38, 1794-1801; g) Y. Zhang, C. S. Lim, D. S. B.
Sim, H. J. Pan, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 1399–
1403; h) W. M. J. Ma, T. D. James, J. M. J. Williams, Org. Lett.
2013, 15, 4850–4853; i) C. Chaudhari, S. M. A H. Siddiki, K.
Shimizu, Tetrahedron Lett. 2013, 54, 6490–6493; j) L. Guo, Y.
Liu, W. Yao, X. Leng, Z. Huang, Org. Lett. 2013, 15, 1144–1147;
k) M. L. Buil, M. A. Esteruelas, J. Herrero, S. Izquierdo, I. M.
Pastor, M. Yus, ACS Catal. 2013, 3, 2072–2075; k) A. E. Putra, K.
Takigawa, H. Tanaka, Y. Ito, Y. Oe, T. Ohta, Eur. J. Org. Chem.
2013, 6344–6354; l) A. E. Putra, Y. Oe, T. Ohta, Eur. J. Org.
Chem. 2013, 6146–6151; m) A. E. Putra, Y. Oe, T. Ohta. Eur. J.
Org. Chem. 2015, 7799.
12. C. Löfberg, R. Grigg, A. Keep, A. Derrick, V. Sridharan, C.
Kilner, Chem. Comm. 2006, 5000.
13. The time course of the reaction was shown in supplementary data.
14. K. P. Kumar, S. Satyanarayana, P. L. Reddy, G. Narasimhulu, N.
Ravirala, B. V. S. Reddy, Tetrahedron Lett. 2012, 53, 1738, and
references there in.
15. Procedure for alkylation of barbituric acid: Barbituric acids 1
(1 mmol), alcohol 2 (1.2 mmol), RuCl2(PPh3)3 (9.6 mg, 1 mol%),
K2CO3 (6.9 mg, 5 mol%) and dry toluene (1 mL) were added to
an Ar-purged 20 mL reaction tube equipped with a J-Young stop
valve. The mixture was degassed using three or more freeze-
pump-thaw cycles and then purged with Ar gas. After the reaction
mixture was stirred at 120 °C for prescribed reaction time, solvent
was evaporated under reduced pressure. The crude product was
purified by silica gel column chromatography by using EtOAc and
hexane with appropriate ratio to give pure corresponding alkylated
barbituric acids 3.