‡ Crystallographic data for 1: C52H93GeNOSi6, M = 989.42, triclinic,
mes
C
mesCN (93%)
¯
space group P1, a
= 13.002(3), b = 19.433(4), c = 12.503(5) Å,
a = 101.48(2), b = 91.22(2), g = 77.17(1)°, U = 3018(1) Å3, Z = 2,
tbt
+
C6D6
Dc = 1.083 g cm23, T = 296 K, F(000) = 1072, colourless prism with
dimensions 0.60
Ge
N
tbt
120 °C
6.48 cm21
,
tip
Ge
O
3
0.50
3
0.40, m(Mo-Ka)
=
O
R(Rw) = 0.056(0.062). Weighting scheme; w = 1/s2(Fo). The intensity
data (2q < 55°) for 1 were collected on a Rigaku AFC5R diffractometer
with graphite-monochromated Mo-Ka radiation (l = 0.71069 Å), and
14509 reflections (13892 unique) were measured. The structure of 1 was
solved by direct methods (structure solution methods; MITHRIL10 and
DIRDIF11), and refined by full-matrix least squares using the TEXSAN
crystallographic software package.12 All the non-hydrogen atoms were
refined anisotropically, while the hydrogen atoms were placed in calculated
positions. The final cycles of the least-squares refinement were based on
5387 observed reflections [I > 3sıIı] and 550 variable parameters. The
maximum and minimum peaks on the final difference Fourier map
correspond to 0.40 and 20.37 e Å23, respectively. CCDC 182/526.
§ New compounds 5 and 6 here obtained gave satisfactory spectral and
analytical data. For 5: white crystals; mp 189–191 °C (deccomp.) (CH2Cl2–
EtOH); 1H NMR (CDCl3, 500 MHz, 300 K) d 20.17 (s, 9 H), 0.00 (s, 9 H),
0.03 (s, 9 H), 0.05 (s, 9 H), 0.06 (s, 9 H), 0.13 (s, 9 H), 0.82 (d, J 6.9 Hz, 3
H), 1.02 (d, J 6.9 Hz, 3 H), 1.13 (s, 1 H), 1.173 (d, J 6.9 Hz, 3 H), 1.174 (d,
J 6.9 Hz, 3 H), 1.27 (br s, 6 H), 1.84 (s, 3 H), 2.09 (s, 1 H), 2.13 (s, 1 H),
2.37 (d, J 12.3 Hz, 1 H), 2.66 (br s, 1 H), 2.79 (spt, J 6.9 Hz, 1 H), 2.85 (d,
J 12.3 Hz, 1 H), 3.95 (br s, 1 H), 4.28 (s, 1 H), 4.86 (s, 1 H), 5.00 (s, 1 H),
5.17 (s, 1 H), 6.29 (s, 1 H), 6.40 (s, 1 H), 6.89 (s, 1 H), 6.93 (s, 1 H). High-
resolution FABMS: observed m/z 927.5016 ([M + H]+). Calc. for
C48H9274GeOSi6 927.5054. For 6: white crystals; mp 177–179 °C (CH2Cl2–
EtOH); 1H NMR (CDCl3, 500 MHz, 300 K) d 20.09 (s, 9 H), 0.04 (s, 18 H),
0.06 (s, 9 H), 0.16 (s, 9 H), 0.17 (s, 9 H), 1.24 (d, J 6.9 Hz, 6 H), 1.29 (br
s, 6 H), 1.33 (d, J 6.9 Hz, 6 H), 1.66 (s, 1 H), 1.72 (br s, 1 H), 2.87 (spt, J
6.9 Hz, 1 H), 3.29 (br s, 2 H), 6.44 (s, 1 H), 6.46 (s, 1 H). High-resolution
FABMS: observed m/z 845.4339 ([M+H]+); calc. for C42H8374GeOSi6
845.4271.
tip
1
4
tip
OH
Me3Si
Ge
SiMe3
SiMe3
tbt
OH
Ge
Me3Si
+
tip
5 (10%)
Me3Si
SiMe3
6 (24%)
tip
OSiMe3
H
tip
OSiMe3
H
Me3Si
Me3Si
Me3Si
Me3Si
Ge
Ge
SiMe3
SiMe3
+
+
Me3Si
SiMe3
7a (35%)
Me3Si
SiMe3
7b (8%)
Scheme 2
reaction of germanone 4 with the butadiene. In the cases of
chalcogen double-bond species, tbt(tip)GeNX (X = S, Se, Te),
the corresponding [4 + 2] cycloadducts were obtained in the
reactions with dienes.2 The reason for this difference is not clear
at present.
The total yield of the silyl-migrated compounds 7a and 7b is
higher than that of the hydrogen-migrated compound 6, which
is probably due to the higher affinity of silicon for oxygen. The
product ratio of 7a to 7b is considered to be kinetically
determined since no isomerization from 7a to 7b is observed
even at 180 °C.
The generation of germanone 4 was also confirmed by the
thermal reaction of 1 in benzene (at 120 °C, in a sealed tube) in
the presence of ethanol, in which ethoxy(hydroxy)germane
tbt(tip)Ge(OH)(OEt) 8, an ethanol adduct of 4, was obtained in
82%. This finding indicates that the intermolecular reaction
with ethanol was faster than the intramolecular silyl or
hydrogen migration mentioned above. It was also confirmed by
thermolysis (120 °C) of a [2H6]benzene solution of oxaza-
germete 1 in the presence of 0.3 equiv of ethanol while being
monitored by 1H NMR. In the initial stage, the ethanol adduct 8
was observed exclusively, and, after consumption of ethanol,
the rearrangement reaction to 6, 7a and 7b occurred.
In summary, we have succeeded in the isolation and
crystallographic analysis of the first 1,2,4-oxazagermete 1,
which undergoes thermal cycloreversion into mesitonitrile and
germanone tbt(tip)GeNO.
1 Recent reviews; see (a) T. Tsumuraya, S. A. Batcheller and S.
Masamune, Angew. Chem., Int. Ed. Engl., 1991, 30, 902; (b) J. Barrau,
J. Escudie´ and J. Satge´, Chem. Rev., 1990, 90, 283; (c) M. Driess and
H. Gru¨tzmacher, Angew. Chem., Int. Ed. Engl., 1996, 35, 828; (d) K. M.
Baines and W. G. Stibbs, Adv. Organomet. Chem., 1996, 39, 275.
2 For the other examples of kinetic stabilization by tbt, see: H. Suzuki,
N. Tokitoh, S. Nagase and R. Okazaki, J. Am. Chem. Soc., 1994, 116,
11 578; N. Tokitoh, T. Matsumoto, K. Manmaru and R. Okazaki, J. Am.
Chem. Soc., 1993, 115, 8855; T. Matsumoto, N. Tokitoh and
R. Okazaki, Angew. Chem., Int. Ed. Engl., 1994, 33, 2316; N. Tokitoh,
T. Matsumoto and R. Okazaki, J. Am. Chem. Soc., 1997, 119, 2337;
N. Tokitoh, M. Saito and R. Okazaki, J. Am. Chem. Soc., 1993, 115,
2065.
3 T. H. Kinstle and J. G. Stam, J. Org. Chem., 1970, 35, 1771; J. T. Pinhey
and E. Rizzardo, Tetrahedron Lett., 1973, 4057; A. G. Sherwood and
H. E. Qunning, J. Am. Chem. Soc., 1963, 85, 3506; J. M. Surzur,
C. Dupy, M. P. Bertrand and R. Nousier, J. Org. Chem., 1972, 37,
2782.
4 (a) K. Wieser and A. Berndt, Angew. Chem., Int. Ed. Engl., 1975, 14, 69;
(b) 1975, 14, 70; (c) H. G. Corkins, L. Storace and E. R. Osgood,
Tetrahedron Lett., 1980, 21, 2025.
5 N. Tokitoh, K. Kishikawa, T. Matsumoto and R. Okazaki, Chem. Lett.,
1995, 827.
6 For the reaction of a germylene with 1,3-dipolar reagents, see, for
example: C. Glidewell, D. Lloyd and K. W. Lumbard, J. Chem. Soc.,
Dalton Trans., 1987, 501.
7 K. M. Baines and W. G. Stibbs, Coord. Chem. Rev., 1995, 145, 157.
8 N. Tokitoh, T. Matsumoto and R. Okazaki, Chem. Lett., 1995, 1087.
9 For a similar cyclization of bis(2,4,6-tri-tert-butylphenyl)germanone,
see: P. Jutzi, H. Schmidt, B. Neumann and H.-G. Stammler, Organome-
tallics, 1996, 15, 741.
10 C. J. Gilmore, MITHRIL. An integrated direct methods computer
program, J. Appl. Crystallogr., 1984, 17, 42 (University of Glasgow).
11 P. T. Beuskens, DIRDIF. Direct methods for difference structures—an
automatic procedure for phase extension and refinement of difference
structure factors, Technical Report 1984/1 Crystallography Laboratory,
Toernooiveld, 6525 Ed Nijmegen, 1984.
Footnotes and References
* E-mail: okazaki:@chem.s.u-tokyo.ac.jp
† Spectral data for 1: white crystals; mp 196–197 °C (decomp.) (CH2Cl2–
EtOH); 1H NMR (CDCl3, 500 MHz, 350 K) d 20.12 (s, 18 H), 0.07 (s, 18
H), 0.09 (s, 18 H), 1.03 (br s, 6 H), 1.24 (d, J 6.9 Hz, 6 H), 1.25 (br s, 6 H),
1.39 (s, 1 H), 1.58 (br s, 2 H), 2.25 (s, 3 H), 2.39 (s, 6 H), 2.87 (spt, J 6.9
Hz, 1 H), 3.37 (br s, 2 H), 6.39 (br s, 2 H), 6.81 (s, 2 H), 7.06 (s, 2 H); 13
C
NMR (CDCl3, 125 MHz, 340 K) d 1.00 (q), 1.08 (q), 1.97 (q), 2.21 (q), 2.23
(q), 20.86 (q), 23.68 (q), 23.73 (q), 24.03 (q), 24.93 (q), 26.94 (q), 29.36 (d),
31.04 (d), 33.99 (d), 34.32 (d), 123.41 (d), 128.71 (d), 129.86 (d), 133.43 (s),
134.28 (s), 137.49 (s), 137.90 (s), 145.58 (s), 149.96 (s), 151.69 (s), 155.17
(s). High-resolution FABMS: observed m/z 990.5158 ([M + H]+). Calc. for
12 TEXSAN: TEXRAY Structure Analysis Package, Molecular Structure
Corporation, 1985.
C
52H9474GeNOSi6 990.5163.
Received in Cambridge, UK, 12th May 1997; 7/03241B
1554
Chem. Commun., 1997