Organic Process Research & Development
Article
of the coupling reaction. Alternatives to zinc were also found,
including ascorbic acid and poly(methylhydrosiloxane).
(15) Xiang, Y.; Caron, P.-Y.; Lillie, B. M.; Vaidyanathan, R. Org.
Process Res. Dev. 2008, 12, 116−119.
(16) Exchange of aryl groups on Xantphos and related
triarylphosphines has been observed, see: (a) Yin, J.; Zhao, M. M.;
Huffman, M. A.; McNamara, J. M. Org. Lett. 2002, 4, 3481−3484.
(b) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101−1104.
(c) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120,
3694−3703. (d) Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org.
Chem. 1995, 60, 12−13.
Elucidation Group who identified many of the impurities
encountered during development. We thank Dave Damon,
Barbara Sitter, Carrie Wager, and John Lucas for carrying out
screening of both metal-catalyzed coupling reactions to verify
the optimal catalysts were selected for development. We
acknowledge Gregg Tavares, Yanqiao Xiang, and Matthew
Frierson for their assistance in the analytical research and
development. We thank John Barry and Jerome McCormick for
providing the analytical data from the axitinib commercial
manufacturing campaigns.
(17) The 3-bromoindazole derivative of 14 fails to react with the Pd
catalyst and remains unchanged under the reaction conditions.
(18) (a) Yamamoto, T.; Sekine, Y. Inorg. Chim. Acta 1984, 83, 47−
53. (b) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397−7403.
(c) Kreis, M.; Braese, S. Adv. Synth. Catal. 2004, 347, 313−319.
(19) (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989−
7000. (b) Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 13178−
13179.
(20) (a) Campeta, A. M.; Chekal, B. P.; Abramov, Y. A.; Meenan, P.
A.; Henson, M. J.; Shi, B.; Singer, R. A.; Horspool, K. R. J. Pharm. Sci.
2010, 99, 3874−3886. (b) Chekal, B. P.; Campeta, A. M.; Abramov, Y.
A.; Feeder, N.; Glynn, P. P.; McLaughlin, R. W.; Meenan, P. A.; Singer,
R. A. Org. Process Res. Dev. 2009, 13, 1327−1337.
(21) Samas, B.; Seadeek, C.; Campeta, A. M.; Chekal, B. P. J. Pharm.
Sci. 2011, 100, 186−194.
REFERENCES
■
(1) Ferrara, N. Oncologist 2004, 9 (Suppl. 1), 2−10.
(2) (a) Hu-Lowe, D. D.; Zou, H. Y.; Grazzini, M. L.; Hallin, M. E.;
Wickman, G. R.; Amundson, K.; Chen, J. H.; Rewolinski, D. A.;
Yamazaki, S.; Wu, E. Y.; McTigue, M. A.; Murray, B. W.; Kania, R. S.;
O’Connor, P.; Shalinsky, D. R.; Bender, S. L. Clin. Cancer Res. 2008,
14, 7272−7283. (b) Kania, R. S.; Bender, S. L.; Borchardt, A. J.;
Braganza, J. F.; Cripps, S. J.; Hua, Y.; Johnson, M. D.; Johnson, T. O.,
Jr.; Luu, H. T.; Palmer, C. L.; Reich, S. H.; Tempczyk-Russell, A. M.;
Teng, M.; Thomas, C.; Varney, M. D.; Wallace, M. B. PCT Int. Appl.
WO/2001/002369, 2001.
(3) Rini, B. I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.;
Hutson, T. E.; Michaelson, M. D.; Gorbunova, V. A.; Gore, M. E.;
Rusakov, I. G.; Negrier, S.; Ou, Y.-C.; Castellano, D.; Lim, H. Y.;
Uemura, H.; Tarazi, J.; Cella, D.; Chen, C.; Rosbrook, B.; Kim, S.;
Motzer, R. J. Lancet 2011, 378, 1931.
(4) (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100,
3009−3066. (b) Farina, V. Adv. Synth. Catal. 2004, 346, 1553−1582.
(5) (a) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.;
Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385−1389. (b) Kondo, T.;
Mitsudo, T.-a. Chem. Rev. 2000, 100, 3205−3220. (c) Hartwig, J. F.
Acc. Chem. Res. 2008, 41, 1534−1544.
(6) Babu, S.; Dagnino, R., Jr.; Ouellette, M. A.; Shi, B.; Tian, Q.;
Zook, S. E. PCT Int. Appl. WO/2006/048745, 2006.
(7) Boulouard, M.; Schumann-Bard, P.; Butt-Gueulle, S.; Lohou, E.;
Stiebing, S.; Collot, V.; Rault, S. Bioorg. Med. Chem. Lett. 2007, 17,
3177−3180.
(8) Ewanicki, B. L.; Flahive, E. J.; Kasparian, A. J.; Mitchell, M. B.;
Perry, M. D.; O’Neill-Slawecki, S. A.; Sach, N. W.; Saenz, J. E.; Shi, B.;
Stankovic, N. S.; Srirangam, J. K.; Tian, Q.; Yu, S. U.S. Pat. Appl. , U.S.
2006094881 A1 20060504, 2006.
(9) (a) Flahive, E. J.; Ewanicki, B. L.; Sach, N. W.; O’Neill-Slawecki,
S. A.; Stankovic, N. S.; Yu, S.; Guinness, S. M.; Dunn, J. Org. Process
Res. Dev. 2008, 12, 637−645. (b) Flahive, E. J.; Ewanicki, B. L.; Yu, S.;
Higginson, P. D.; Sach, N. W.; Morao, I. QSAR Comb. Sci. 2007, 26,
679−685.
(10) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587−4590.
(11) LiCl and other lithium salts have been used to influence the
product distribution in the Heck reaction, presumably through
affecting the Pd during migratory insertion while also impacting the
extent of Pd maintained in solution. See (a) Okano, K.; Tokuyama, H.;
Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136. (b) Schmidt, A. F.;
Halaiqa, A. A.; Smirnov, V. V. Synlett 2006, 2861.
(12) (a) Zanella, R.; Ros, R.; Grazian, M. Inorg. Chem. 1973, 12,
2736−2738. (b) Lam, C, T.; Senoff, C. V. Can. J. Chem. 1973, 51,
3790−3794. (c) Canich, J. A. M.; Cotton, F. A.; Dunbar, K. R.;
Falvello, L. R. Inorg. Chem. 1988, 27, 804−811. (d) Louie, J.; Hartwig,
J. F. J. Am. Chem. Soc. 1995, 117, 11598−11599.
(13) Zinc has been shown to enable couplings of aryl disulfide
species previously. For nickel couplings, see: Taniguchi, N. J. Org.
Chem. 2004, 69, 6904−6906. For Pd couplings using dppf as the
supporting ligand, see: Fukuzawa, S.-i.; Tanihara, D.; Kikuchi, S. Synlett
2006, 2145−2147.
(14) When charging 10 to the Pd catalyst in the absence of 12
initially, this leads to complete inhibition of the catalyst; however,
charging catalytic zinc reactivates the catalyst, enabling full conversion
I
dx.doi.org/10.1021/op400088k | Org. Process Res. Dev. XXXX, XXX, XXX−XXX