S. Riedmüller, O. Kaufhold, H. Spreitzer, B. J. Nachtsheim
SHORT COMMUNICATION
[7] a) Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198–3209; b)
L. Shi, M. Wang, C.-A. Fan, F.-M. Zhang, Y.-Q. Tu, Org. Lett.
2003, 5, 3515–3517; c) M. Beller, C. Breindl, T. H. Riermeier,
A. Tillack, J. Org. Chem. 2001, 66, 1403–1412.
[8] a) Y. Nishide, H. Osuga, K. Iwata, K. Tanaka, H. Sakamoto,
Bull. Chem. Soc. Jpn. 2008, 81, 1322–1330; b) W. Gao, W. Wu,
K. Dogra, V. Rostovtsev, K. D. Dobbs, WO 2012/021315 A2,
2012; c) H. Spreitzer, J. Schwaiger, H. Becker, F. Voges, H. Heil,
DE 102009053191 A1, 2011; d) H. Spreitzer, O. Kaufhold, S.
Riedmüller, WO 2013/068075 A1, 2013; e) T. Ichinori, U.
Naoyuki, US 2007/0149815 A1, 2007.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures, characterization data, and
copies of the 1H NMR and 13C NMR spectra of the prepared
secondary amines and final products.
Acknowledgments
Financial support by the Deutsche Forschungsgemeinschaft
(DFG) and the Fonds der Chemischen Industrie is acknowledged.
S. R. gratefully acknowledges Merck KGaA for financial support.
[9] a) E. Ullah, J. McNulty, V. Larichev, A. J. Robertson, Eur. J.
Org. Chem. 2010, 6824–6830; b) M. Yano, T. Furuya, M. Yone-
zawa, M. Tatsumi, M. Oyama, K. Sato, T. Takui, Polyhedron
2005, 24, 2121–2125; c) M. J. Plater, M. McKay, T. Jackson, J.
Chem. Soc. Perkin Trans. 1 2000, 2695–2701; recent examples
that describe the synthesis of hindered anilines and hindered
secondary aromatic amines, see: d) R. P. Rucker, A. M. Whitta-
ker, H. Dang, G. Lalic, Angew. Chem. 2012, 124, 4019–4022;
Angew. Chem. Int. Ed. 2012, 51, 3953–3956; e) S. M. Raders,
J. N. Moore, J. K. Parks, A. D. Miller, T. M. Leißing, S. P. Kel-
ley, R. D. Rogers, K. H. Shaughnessy, J. Org. Chem. 2013, 78,
4649–4664; a recent example that describes the synthesis of 1,2-
diaryl-substituted imidazoles with sterically demanding substit-
uents at the respective ortho positions: f) M. Miksch, M. Tenne,
T. Strassner, Eur. J. Org. Chem. 2013, 6137–6145.
[1] a) Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 2011, 40, 2943–
2970; b) H. Meng, N. Herron, Organic Light-Emitting Materi-
als and Devices (Eds.: Z. Li, H. Meng), Taylor & Francis
Group, Boca Raton, FL, USA, 2007, p. 295–412; c) Y. Shirota,
J. Mater. Chem. 2005, 15, 75–93; d) Y. Shirota, J. Mater. Chem.
2000, 10, 1–25.
[2] For catalytic systems that are primarily suitable for the synthe-
sis of triarylamines, see: a) K. H. Hoi, J. A. Coggan, M. G.
Organ, Chem. Eur. J. 2013, 19, 843–845; b) Y. Hirai, Y. Uo-
zumi, Chem. Commun. 2010, 46, 1103–1105; c) Y. Hirai, Y. Uo-
zumi, Chem. Asian J. 2010, 5, 1788–1795; d) K. Suzuki, Y.
Hori, T. Kobayashi, Adv. Synth. Catal. 2008, 350, 652–656; e)
D. S. Surry, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129,
10354–10355; f) C. Chen, Y.-F. Li, L.-M. Yang, J. Mol. Catal.
A 2007, 269, 158–162; g) M. C. Harris, S. L. Buchwald, J. Org.
Chem. 2000, 65, 5327–5333; h) T. Yamamoto, M. Nishiyama,
Y. Koie, Tetrahedron Lett. 1998, 39, 2367–2370; i) J. Louie, J. F.
Hartwig, A. J. Fry, J. Am. Chem. Soc. 1997, 119, 11695–11696.
[3] For catalytic systems in which both alkylamines and di-
arylamines are used as coupling partners, see: a) B. P. Fors,
S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 15914–15917; b)
Q. Dai, W. Gao, D. Liu, L. M. Kapes, X. Zhang, J. Org. Chem.
2006, 71, 3928–3934; c) L. Ackermann, J. H. Spatz, C. J.
Gschrei, R. Born, A. Althammer, Angew. Chem. 2006, 118,
7789–7792; Angew. Chem. Int. Ed. 2006, 45, 7627–7630; d) L.
Ackermann, R. Born, Angew. Chem. 2005, 117, 2497–2500; An-
gew. Chem. Int. Ed. 2005, 44, 2444–2447; e) S. Urgaonkar, J.-
H. Xu, J. G. Verkade, J. Org. Chem. 2003, 68, 8416–8423; f) N.
Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, J. Org. Chem.
2002, 67, 5553–5566; g) J. P. Wolfe, H. Tomori, J. P. Sadighi, J.
Yin, S. L. Buchwald, J. Org. Chem. 2000, 65, 1158–1174; h)
J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaughnessy,
L. M. Alcazar-Roman, J. Org. Chem. 1999, 64, 5575–5580; i)
[10] R. Kuwano, Y. Matsumoto, T. Shige, T. Tanaka, S. Soga, Y.
Hanasaki, Synlett 2010, 12, 1819–1824.
[11]
The same catalyst system enables the coupling of hydroxyl-
amine O-benzyl ether with several bromoarenes to give triaryl-
amines. Notably, high selectivity for the formation of the sec-
ondary amine was observed if 2-bromotoluene or 2-bromobi-
phenyl was used as the halogen compound, see: R. B. Bedford,
M. Betham, Tetrahedron Lett. 2007, 48, 8947–8950.
[12]
[13]
[14]
P. Stössel, H. Spreitzer, H. Becker, WO 03/037844 A1, 2003.
S. L. Buchwald, K. W. Anderson, WO 2006/074315 A2, 2006.
T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J.
Am. Chem. Soc. 2005, 127, 4685–4696.
[15] M. Nishiyama, Y. Koie, EP 0802173 A1, 1997.
[16] SPhos (2-dicyclohexylphosphino-2Ј,6Ј-dimethoxybiphenyl) is a
colorless, crystalline solid that is easier to handle than dilute
solutions of P(tBu)3.
[17] J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc.
Chem. Res. 1998, 31, 805–818.
[18] Although H– is the smallest conceivable base, hydride salts are
insoluble in organic solvents and thus do not dissociate.
B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999, 576, [19] W. K. McEwen, J. Am. Chem. Soc. 1936, 58, 1124–1129.
125–146.
[20] We can adopt comparable pKa values in other aromatic hydro-
carbon solvents (e.g., toluene in our case).
[4] a) A. Tlili, F. Monnier, M. Taillefer, Chem. Commun. 2012, 48,
6408–6410; b) F. Monnier, M. Taillefer, Angew. Chem. 2008,
120, 3140–3143; Angew. Chem. Int. Ed. 2008, 47, 3096–3099;
c) G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108,
3054–3131; d) Y.-H. Liu, C. Chen, L.-M. Yang, Tetrahedron
Lett. 2006, 47, 9275–9278; e) K. Matsuo, Y. Shichida, H. Nish-
ida, S. Nakata, M. Okubo, J. Phys. Org. Chem. 1994, 7, 9–17;
f) A. J. Paine, J. Am. Chem. Soc. 1987, 109, 1496–1502.
[5] a) L. Alakonda, M. Periasamy, Synthesis 2012, 44, 1063–1068;
b) T. Hatakeyama, R. Imayoshi, Y. Yoshimoto, S. K. Ghorai,
M. Jin, H. Takaya, K. Norisuye, Y. Sohrin, M. Nakamura, J.
Am. Chem. Soc. 2012, 134, 20262–20265.
[21] In our first attempts with the use of n-hexyllithium as the base,
we deprotonated the secondary amine in a separate reaction
vessel in THF.[3i] Then, we added this solution to the catalyst/
halonaphthalene mixture. Later on, we were able to simplify
the experimental procedure and showed that the use of n-hexyl-
lithium was also tolerated in a one-pot procedure in toluene
without the a priori deprotonation.
[22] In general, the yields obtained with the use of 1-bromonaphth-
alene were higher than those obtained with the use of 1-chloro-
naphthalene. However, in some cases we obtained yields that
were opposite to the expected trend. We attribute this behavior
to the influence of small-scale reactions and their sensitivity
during the workup procedure.
[6] a) H. Tadaoka, T. Yamakawa, Tetrahedron Lett. 2012, 53,
5531–5534; b) C.-Y. Gao, X. Cao, L.-M. Yang, Org. Biomol.
Chem. 2009, 7, 3922–3925; c) Chen, L.-M. Yang, Org. Lett.
2005, 7, 2209–2211.
Received: January 10, 2014
Published Online: January 31, 2014
1394
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 1391–1394