ChemComm
Communication
Science’’ from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
Notes and references
1 (a) The Chemistry of Enamines, ed. Z. Rappaport and J. Wiley,
Chichester, UK, 1994; (b) Enamines: Synthesis, Structure and Reac-
tions, ed. A. G. Cook, Marcel Dekker, New York, 2nd edn, 1987.
ˇ
ˇ
ˇ
2 B. Prek, J. Bezensek, M. Kasunic, U. Groselj, J. Svete and
B. Stanovnik, Tetrahedron, 2014, 70, 2359–2369.
3 B. Stanovnik and J. Svete, Chem. Rev., 2004, 104, 2433–2480.
ˇ
ˇ
ˇ
4 (a) J. Bezensek, B. Prek, U. Groselj, M. Kasanic, J. Svete and
B. Stanovnik, Tetrahedron, 2012, 68, 4719–4731; (b) G. J. Reddy,
D. Latha, C. Thirupathaiah and K. S. Rao, Tetrahedron Lett., 2005, 46,
301–302.
Fig. 3 Plausible reaction mechanism for formation of enamines.
ˇ ˇ
5 (a) U. Ursic, J. Svete and B. Stanovnik, Tetrahedron, 2010, 66,
2-Bromo-6-methylpyridine was used as a substrate to examine
the scope of the reaction on the pyridine ring, and smooth
condensation was demonstrated for 40-methoxy-N-methyl-
formanilide by the use of CsF without affecting the bromo
substituent (entry 5).
The plausible reaction mechanism for the formation of
b-enaminoester and by-product is shown in Fig. 3. Generation
of HMDS amide bases first occurs from the combination of CsF
and (TMS)3N and the base catalyst deprotonates C(sp3)–H bond
4346–4356; (b) R. Augusti and C. Kascheres, J. Org. Chem., 1988,
53, 2084–2086; (c) H. M. C. Ferraz, F. L. C. Pereira, F. S. Leite,
M. R. S. Nunes and M. E. Payret-Arru´a, Tetrahedron, 1999, 55,
10915–10924.
´
6 (a) A. Alberola, L. A. Calvo, A. G. Ortega, M. C. S. Ruız and P. Yustos,
J. Org. Chem., 1999, 64, 9493–9498; (b) M. M. Abdelkhalik,
A. M. Eltoukhy, S. M. Agamy and M. H. Elnagdi, J. Heterocycl. Chem.,
2004, 41, 431–434.
7 A. C. Spivey, R. Srikaran, C. M. Diaper and D. J. Turner, Org. Biomol.
Chem., 2003, 1, 1638–1640.
8 B. H. Al-Sader and M. Kadri, Tetrahedron Lett., 1985, 26, 4661–4664.
9 J. F. Bower, P. Szeto and T. Gallagher, Org. Lett., 2007, 9, 3283–3286.
a- to a carbonyl group of tbutyl acetate, forming cesium enolate I. 10 G. Dannhardt, A. Bauer and U. Nowe, J. Prakt. Chem., 1998, 340,
256–263.
Subsequently, addition reaction of I to N-methylformanilides
proceeds, which provides cesium alkoxide II. In the case of the
11 D. L. Boger, T. Ishizaki, R. J. Wysocki Jr., S. A. Munk, P. A. Kitos and
O. Suntornwat, J. Am. Chem. Soc., 1989, 111, 6461–6463.
use of N-methylformanilides possessing an electron-withdrawing 12 P. C. Appelbaum and P. A. Hunter, Int. J. Antimicrob. Agents, 2000,
16, 5–15.
group at the p-position on the benzene ring, deformylation reaction
becomes easier to take place and N-methylanilines might be
13 J. P. Michael, C. B. de Koning, D. Gravestock, G. D. Hosken,
A. S. Howard, C. M. Jungmann, R. W. M. Krause, A. S. Parsons,
produced as the main side product. The silylation of II with
(TMS)3N generates the silyl ether III and an HMDS amide base
that enables achievement of the catalytic cycle. The HMDS amide
bases and/or other anionic species cause deprotonation of III to
eliminate trimethylsilanoxide, consequently b-enaminoesters IV
are produced. In our preliminary mechanistic experiments, the
S. C. Pelly and T. V. Stanbury, Pure Appl. Chem., 1999, 71, 979–988.
14 (a) J. V. Greenhill, Chem. Soc. Rev., 1977, 6, 277–294; (b) A.-Z.
A. Elassar and A. A. El-Khair, Tetrahedron, 2003, 59, 8463–8480;
(c) G. Negri, C. Kascheres and A. J. Kascheres, J. Heterocycl. Chem.,
2004, 41, 461–491.
15 (a) D. F. Martin, G. A. Janusonis and B. B. Martin, J. Am. Chem. Soc.,
1961, 83, 73–75; (b) B. Rechsteiner, F. Texier-Boullet and J. Hamelin,
Tetrahedron Lett., 1993, 34, 5071–5074; (c) A. Arcadi, G. Bianchi, S. Di
Giuseppe and F. Marinelli, Green Chem., 2003, 5, 64–67; (d) A. R.
Khosropour, M. M. Khodaei and M. Kookhazadeh, Tetrahedron Lett.,
2004, 45, 1725–1728; (e) Z.-H. Zhang, L. Yin and Y.-M. Wang, Adv.
Synth. Catal., 2006, 348, 184–190; ( f ) R. Dalpozzo, A. De Nino,
M. Nardi, B. Russo and A. Procopio, Synthesis, 2006, 1127–1132;
(g) J. Lin and L.-F. Zhang, Monatsh. Chem., 2007, 138, 77–88;
(h) F. Epofano, S. Genovese and M. Curini, Tetrahedron Lett., 2007,
48, 2717–2720.
1
reaction was monitored using H-NMR and the formation of the
silanol and disiloxane were observed (see ESI†). Further studies to
clarify this mechanism with the further synthetic applications of
this methodology are under investigation.
In conclusion, we have developed a novel, one-pot approach
for the synthesis of functionalized enamines, including
b-enaminoesters using HMDS amide bases, generated in situ 16 (a) B. J. Turunen and G. I. Georg, J. Am. Chem. Soc., 2006, 128,
8702–8703; (b) N. Panda and R. Mothkuri, J. Org. Chem., 2012, 77,
9407–9412.
17 (a) J. R. Dehli, J. Legros and C. Bolm, Chem. Commun., 2005,
via the combination of aminosilanes and fluoride salts. Further
studies on expanding the scope and limitations toward sub-
strates with diverse functionalities are in progress and further
applications of this methodology are also underway.
973–986; (b) C. Han, R. Shen, S. Su and J. A. Porco Jr., Org. Lett.,
2004, 6, 27.
18 Y.-Y. Ke, Y.-J. Li, J.-H. Jia, W.-J. Sheng, L. Han and J.-R. Gao,
Tetrahedron Lett., 2009, 50, 1389–1391.
This work was partly supported by a Grant-in-Aid for
Scientific Research (B) (No. 23390002), a Grant-in-Aid for 19 K. Kobayashi, M. Ueno and Y. Kondo, Chem. Commun., 2006,
3128–3130.
Challenging Exploratory Research (No. 23659001) and
a
20 (a) D. A. Oare and C. H. Heathcock, J. Org. Chem., 1990, 55, 157–172;
(b) M. L. Hlavinka and J. R. Hagadorn, Tetrahedron Lett., 2006, 47,
5049–5053.
21 (a) K. Inamoto, H. Okawa, H. Taneda, M. Sato, Y. Hirono,
M. Yonemoto, S. Kikkawa and Y. Kondo, Chem. Commun., 2012,
48, 9771–9773; (b) K. Inamoto, Y. Araki, S. Kikkawa, M. Yonemoto
and Y. Kondo, Org. Biomol. Chem., 2013, 11, 4438–4441.
Grant-in-Aid for Young Scientists (B) (No. 23790002) from Japan
Society for the promotion of Science, a Grant-in-Aid for Scientific
Research on Innovative Areas ‘‘Advanced Molecular Transforma-
tions by Organocatalysis’’ (No. 23105009) and the project
‘‘Platform for Drug Discovery, Informatics, and Structural Life
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 6523--6525 | 6525