Paper
Organic & Biomolecular Chemistry
A. Yamamoto, Chem. Lett., 1982, 11, 865; (c) T. Kobayashi
( j) J. Balogh, A. Kuik, L. Ürge, F. Darvas, J. Bakos and
R. Skoda-Földes, J. Mol. Catal. A: Chem., 2009, 302, 76.
7 (a) A. C. Chen, R. L. Decken and C. M. Crudden, Organo-
metallics, 2000, 19, 3459; (b) M. Poyatos, P. Uriz, J. Mata,
C. Claver, E. Fernandez and E. Peris, Organometallics, 2002,
22, 44; (c) K. Okuyama, J. Sugiyama, R. Ngahata, M. Asai,
M. Ueda and K. Takeuchi, J. Mol. Catal. A: Chem., 2003,
203, 21; (d) K. Okuyama, J. Sugiyama, R. Ngahata, M. Asai,
M. Ueda and K. Takeuchi, Green Chem., 2003, 5, 563;
(e) M. Bortenschlager, J. Schutz, D. V. Preysing, O. Nuyken,
W. A. Herrmann and R. Weberskirch, J. Organomet. Chem.,
2005, 690, 6233. Reviews and books: (f) W. A. Herrmann
and C. Kocher, Angew. Chem., Int. Ed. Engl., 1997, 36, 2162;
(g) A. J. Arduengo, Acc. Chem. Res., 1999, 32, 913;
(h) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34,
18; (i) W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41,
1290; ( j) E. A. B. Kantchev, C. J. O’Brien and M. G. Organ,
Angew. Chem., Int. Ed., 2007, 46, 2768; (k) S. P. Nolan,
N-Heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinheim,
Germany, 2006; (l) F. Glorius, N-Heterocyclic Carbenes in
Transition Metal Catalysis, Springer-Verlag, Berlin
Heildergerg, Germany, 2007; (m) G. C. Fortman and
S. P. Nolan, Chem. Soc. Rev., 2011, 40, 5151;
(n) V. P. Boyarskiy, K. V. Luzyanin and V. Yu. Kukushkin,
Coord. Chem. Rev., 2012, 256, 2029.
and M. Tanaka, J. Organomet. Chem., 1982, 233, C64;
(d) F. Ozawa, H. Soyama, H. Yanagihara, I. Aoyama,
H. Takino, K. Izawa, T. Yamamoto and A. Yamamoto, J. Am.
Chem. Soc., 1985, 107, 3235; (e) N. Tsukada, Y. Ohba and
Y. Inoue, J. Organomet. Chem., 2003, 687, 436;
(f) H. Abbayes and J. Y. Salaun, Dalton Trans., 2003, 1041;
(g) M. Lizuka and Y. Kondo, Chem. Commun., 2006, 1739;
(h) E. R. Murphy, J. R. Martinelli, N. Zaborenko,
S. L. Buchwald and K. F. Jensen, Angew. Chem., Int. Ed.,
2007, 46, 1734.
3 (a) M. Beller, B. Cornils, C. D. Frohning and
C. W. Kohlpaintner, J. Mol. Catal. A: Chem., 1995, 104, 17;
(b) M. Beller, Catalytic Carbonylation Reactions, Top. Organo-
met. Chem., Springer, Berlin, Heidelberg, 2006, vol. 18;
(c) L. Kollár, Modern Carbonylation Methods, Wiley-VCH,
Weinheim, 2008; (d) R. Grigg and S. P. Mutton, Tetrahedron,
2010, 66, 5515.
4 (a) Y. Kim and S. Lee, Org. Lett., 2011, 13, 944; (b) M. Papp
and R. Skoda-Földes, J. Mol. Catal. A: Chem., 2013, 378,
193; (c) D. S. Ryabukhin, V. N. Sorokoumov, E. A. Savicheva,
V. P. Boyarskiy, I. A. Balova and A. V. Vasilyev, Tetrahedron
Lett., 2013, 54, 2369; (d) X. J. Feng, J. L. Song, H. S. Liu,
L. G. Wang, X. Q. Yu and M. Bao, RSC Adv., 2013, 3, 18985;
(e) W. Kim, K. Park, A. Park, J. Choe and S. Lee, Org. Lett.,
2013, 15, 1654; (f) C. Brancour, T. Fukuyama, Y. Mukai,
T. Skrydstrup and I. Ryu, Org. Lett., 2013, 15, 2794;
(g) H. Zhao, M. Z. Cheng, J. T. Zhang and M. Z. Cai, Green
Chem., 2014, 16, 2515.
8 (a) E. Assen, B. Kantchev and J. Y. Ying, Organometallics,
2009, 28, 289; (b) C. J. O’Brien, E. A. B. Kantchev,
C. Valente, N. Hadei, G. A. Chass, A. Lough,
A. C. Hopkinson and M. G. Organ, Chem. – Eur. J., 2006,
12, 4743; (c) L. Zhu, T. Gao and L.-X. Shao, Tetrahedron,
2011, 67, 5150.
9 (a) E. A. B. Kantchev, G.-R. Peh, C. Zhang and J. Y. Ying,
Org. Lett., 2008, 10, 3949; (b) G.-R. Peh, E. A. B. Kantchev,
C. Zhang and J. Y. Ying, Org. Biomol. Chem., 2009, 7, 2110.
5 (a) K. J. Sonogashira, J. Organomet. Chem., 2002, 653, 46;
(b) R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874;
(c) R. Chinchilla; and C. Najera, Chem. Soc. Rev., 2011, 40,
5084.
6 (a) A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem.
Soc., 1991, 113, 361; (b) G. Mann, C. Incarvito, 10 (a) S. Z. Zheng, X. G. Peng, J. M. Liu, W. Sun and C. G. Xia,
A. L. Rheingold and J. F. Hartwig, J. Am. Chem. Soc., 1999,
121, 3224; (c) A. F. Littke, C. Daiand and G. C. Fu, J. Am.
Chem. Soc., 2000, 122, 4020; (d) Y. Uozumi, T. Arii and
T. Watanabe, J. Org. Chem., 2001, 66, 5272;
(e) R. F. Cunicoand and B. C. Maity, Org. Lett., 2002, 4,
4357; (f) S. C. Bonnaire, J. F. Carpentier, A. Mortreux and
Chin. J. Chem., 2007, 25, 1065; (b) S. Z. Zheng, F. W. Li,
J. M. Liu and C. G. Xia, Tetrahedron Lett., 2007, 48, 5883;
(c) S. Z. Zheng, X. G. Peng, J. M. Liu, W. Sun and C. G. Xia,
Helv. Chim. Acta, 2007, 90, 1471; (d) S. Z. Zheng, Y. Wang,
C. Y. Zhang, J. H. Liu and C. G. Xia, Appl. Organomet.
Chem., 2014, 28, 48.
Y. Castanet, Tetrahedron, 2003, 59, 2793; (g) X. Wu, 11 (a) J. H. Liu, J. Chen and C. G. Xia, J. Catal., 2008, 253, 50;
P. Nilsson and M. Larhed, J. Org. Chem., 2005, 70, 346;
(h) C. F. J. Barnard, Organometallics, 2008, 27, 5402;
(i) C. Csajági, B. Borcsek, K. Niesz, I. Kovács, Z. Székelyhidi,
(b) J. M. Liu, X. G. Peng, W. Sun, Y. W. Zhao and C. G. Xia,
Org. Lett., 2008, 10, 3933; (c) Y. Wang, J. H. Liu and
C. G. Xia, Tetrahedron Lett., 2011, 52, 1587.
Z. Bajkó, L. Ürge and F. Darvas, Org. Lett., 2008, 10, 1589; 12 See ESI for details on optimized reaction conditions.
9706 | Org. Biomol. Chem., 2014, 12, 9702–9706
This journal is © The Royal Society of Chemistry 2014