Page 5 of 6
Journal of the American Chemical Society
Indicate Lower Barrier via Boronate Intermediate. ChemCatChem
2014, 6, 3132.
1
(6) (a) Huang, Y.-L., Weng, C.-M., and Hong, F.-E., Density Func-
tional Studies on Palladium-Catalyzed Suzuki–Miyaura Cross-Cou-
pling Reactions Assisted by N- or P-Chelating Ligands. Chem. Eur. J.
2008, 14, 4426. (b) Note that studies by Denmark suggest transmeta-
lation of diphosphine complexes related to B may occur by dissociation
of a phosphine in order to access a transition state involving a fourcoor-
dinate Pd-complex, see: (b) Thomas, A. A.; Wang, H.; Zahrt, A. F.;
Denmark, S. E., Structural, Kinetic, and Computational Characteriza-
tion of the Elusive Arylpalladium(II)boronate Complexes in the Su-
zuki–Miyaura Reaction. J. Am. Chem. Soc. 2017, 139, 3805. With
monophosphine Pd complexes, transmetalation through B-O-Pd
bonded four-coordinate structures appears to predominate, see: (c)
Thomas, A. A.; Zahrt, A. F.; Delaney, C. P.; Denmark, S. E., Elucidat-
ing the Role of the Boronic Esters in the Suzuki–Miyaura Reaction:
Structural, Kinetic, and Computational Investigations. J. Am. Chem.
Soc. 2018, 140, 4401. (d) Thomas, A. A.; Denmark, S. E., Pre-
transmetalation Intermediates in the Suzuki-Miyaura Reaction Re-
vealed: The Missing Link. Science 2016, 352, 329. (e) Carrow, B. P.;
Hartwig, J. F., Distinguishing Between Pathways for Transmetalation
in Suzuki−Miyaura Reactions. J. Am. Chem. Soc. 2011, 133, 2116. (f)
Amatore, C.; Jutand, A.; Le Duc, G., Kinetic Data for the Transmeta-
lation/Reductive Elimination in Palladium-Catalyzed Suzuki–Miyaura
Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base.
Chem. Eur. J. 2011, 17, 2492. (g) Matos, K.; Soderquist, J. A., Alkyl-
boranes in the Suzuki−Miyaura Coupling:ꢀ Stereochemical and Mech-
anistic Studies. J. Org. Chem. 1998, 63, 461.
(7) Baidossi, W.; Rosenfeld, A.; Wassermann, B. C.; Schutte, S.;
Schumann, H.; Blum, J., [(3-Dimethylamino)propyl]dimethylalumi-
num: A Convenient Reagent for Methylation and Ethynylation of Car-
bonyl Compounds. Synthesis 1996, 9, 1127.
(8) Wood, J. L.; Marciasini, L. D.; Vaultier, M.; Pucheault, M., Iron
Catalysis and Water: A Synergy for Refunctionalization of Boron. Syn-
lett 2014, 25, 0551.
(9) The configuration of the "ate" complexes was secured by both
NOE and chemical shift analysis. See Supporting Information for de-
tails.
(10) Mlynarski, S. N.; Karns, A. S.; Morken, J. P., Direct Stereospe-
cific Amination of Alkyl and Aryl Pinacol Boronates. J. Am. Chem.
Soc. 2012, 134, 16449.
(11) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-
Gauthier, R.; Scott, H. K.; Aggarwal, V. K., Enantioselective Construc-
tion of Quaternary Stereogenic Centers from Tertiary Boronic Esters:
Methodology and Applications. Angew. Chem. Int. Ed. 2011, 50, 3760.
(12) Gregson, M.; Ollis, W. D.; Redman, B. T.; Sutherland, I. O.;
Dietrichs, H. H.; Gottlieb, O. R., Obtusastyrene and Obtustyrene, Cin-
namylphenols from Dalbergia Retusa. Phytochemistry 1978, 17, 1395.
(13) Chen, C.; Weisel, M., Concise Asymmetric Synthesis of (+)-
Conocarpan and Obtusafuran. Synlett 2013, 24, 189.
(14) (a) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q., Pd(II)-Catalyzed
Hydroxyl-Directed C−H Activation/C−O Cyclization: Expedient Con-
struction of Dihydrobenzofurans. J. Am. Chem. Soc., 2010, 132, 12203.
(b) Wang, H.; Li, G.; Engle, K. M.; Yu, J.-Q.; Davies, H. M. L., Se-
quential C–H Functionalization Reactions for the Enantioselective
Synthesis of Highly Functionalized 2,3-Dihydrobenzofurans. J. Am.
Chem. Soc., 2013, 135, 6774.
2
3
4
5
6
7
8
9
Desymmetrization of a Bis(phenol). J. Am. Chem. Soc. 2008, 130,
16358. (f) Gao, F.; Lee, Y.; Mandai, K.; Hoveyda, A. H., Quaternary
Carbon Stereogenic Centers through Copper-Catalyzed Enantioselec-
tive Allylic Substitutions with Readily Accessible Aryl- or Heteroaryl-
lithium Reagents and Aluminum Chlorides. Angew. Chem. Int. Ed.
2010, 49, 8370.
(3) Examples: Tapentadol: (a) Zhang, Q.; Li, J.-F.; Tian,G.-H.;
Zhang, R.-X.; Sun, J.; Suo, J.; Feng, X.; Fang, D.; Jiang, X.-R.; Shen,
J.-S., A Practical and Enantioselective Synthesis of Tapentadol. Tetra-
hedron Asymm. 2012, 23, 577. Taranabant: (b) Wallace, D. J.; Campos,
K. R.; Shultz, C. S.; Klapars, A.; Zewge, D.; Crump, B. R.; Phenix, B.
D.; McWilliams, J. C.; Krska, S.; Sun, Y.; Chen, C. Y.; Spindler, F.,
New Efficient Asymmetric Synthesis of Taranabant, a CB1R Inverse
Agonist for the Treatment of Obesity. Org. Process Res. Dev. 2009, 13,
84. Mixanpril: (c) Turcaud, S.; Gonzalez, W.; Michel, J.; Roques, B.
P.; Fournie-Zaluski, C., Diastereoselective Synthesis of Mixanpril, an
Orally Active Dual Inhibitor of Neutral Endopeptidase and Angioten-
sin Converting Enzyme. Bioorg. Med. Chem. Lett. 1995, 5, 1893. Par-
oxetine: (d) Zhang, Y.; Liao, Y. T.; Liu, X. H.; Yao, Q.; Zhou, Y. H.;
Lin, L. L.; Feng, X. M., Catalytic Michael/Ring-Closure Reaction of
α,β-Unsaturated Pyrazoleamides with Amidomalonates: Asymmetric
Synthesis of (−)-Paroxetine. Chem. Eur. J. 2016, 22, 15119.
(4) (a) Zhang, L.; Lovinger, G. J.; Edelstein, E.K.; Szymaniak, A.
A.; Chierchia, M. P.; Morken, J. P., Catalytic Conjunctive Cross-Cou-
pling Enabled by Metal-Induced Metallate Rearrangement. Science,
2016, 351, 70. (b) Lovinger, G. J.; Aparece, M. D.; Morken, J. P., Pd-
Catalyzed Conjunctive Cross-Coupling between Grignard-Derived Bo-
ron “Ate” Complexes and C(sp2) Halides or Triflates: NaOTf as a Gri-
gnard Activator and Halide Scavenger. J. Am. Chem. Soc. 2017, 139,
3153. (c) Edelstein, E. K.; Namirembe, S.; Morken, J. P., Enantioselec-
tive Conjunctive Cross-Coupling of Bis(alkenyl)borates: A General
Synthesis of Chiral Allylboron Reagents. J. Am. Chem. Soc. 2017, 139,
5027. (d) Chierchia, M. P.; Law, C.; Morken, J. P., Nickel-Catalyzed
Enantioselective Conjunctive Cross-Coupling of 9-BBN Borates. An-
gew. Chem. Int. Ed. 2017, 56, 11870. (e) Lovinger, G. J.; Morken, J.
P., Ni-Catalyzed Enantioselective Conjunctive Coupling with C(sp3)
Electrophiles: A Radical-Ionic Mechanistic Dichotomy. J. Am. Chem.
Soc. 2017, 139, 17293. (f) Myhill, J. A.; Zhang, L.; Lovinger, G. A.;
Morken, J. P., Enantioselective Construction of Tertiary Boronic Esters
by Conjunctive Cross-Coupling. Angew. Chem. Int. Ed. 2018, 57,
12799. For recent aligned studies on electrophile-induced metallate re-
arrangement, see the following citations and references cited therein:
(g) Wilson, C. M.; Ganesh, V.; Noble, A.; Aggarwal, V. K., Enanti-
ospecific sp2–sp3 Coupling of ortho- and para-Phenols with Secondar-
yand Tertiary Boronic Esters. Angew. Chem. Int. Ed. 2017, 56, 16318.
(h) Ganesh, V.; Odachowski, M.; Aggarwal, V. K., Alkynyl Moiety for
Triggering 1,2-Metallate Shifts: Enantiospecific sp2-sp3 Coupling of
Boronic Esters with p-Arylacetylenes. Angew. Chem. Int.
Ed., 2017, 56, 9752. (i) Wang, Y.; Noble, A.; Sandford, C.; Aggarwal,
V. K., Enantiospecific Trifluoromethyl-Radical-Induced Three-Com-
ponent Coupling of Boronic Esters with Furans. Angew. Chem. Int.
Ed., 2017, 56, 1810. (j) Panda, S.; Ready, J. M., Tandem Allylation/1,2-
Boronate Rearrangement for the Asymmetric Synthesis of Indolines
with Adjacent Quaternary Stereocenters. J. Am. Chem. Soc., 2018, 140,
13242.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) Ortuño, M. A.; Lledós, A.; Maseras, F.; Ujaque, G., The
Transmetalation Process in Suzuki–Miyaura Reactions: Calculations
ACS Paragon Plus Environment