Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
2
K. Gorska, N. Winssinger, Angew. Chem. Int. Ed., 2013, 57,
visible light are similarly sequence specific, can reach over 100-
fold template-induced rate acceleration and are able to detect
down to 0.1 pM nucleic acids.33,34 We envision that after
improving sensitivity limit (e.g. by using catalysts with longer
PNA sequences) and rate acceleration (e.g. by optimization of
reducible substrates and substrate/catalyst orientation on the
template), our reaction can become a highly useful addition to
the currently available repertoire of photochemical nucleic
acid-templated reactions. It will offer a critical advantage over
the known systems of using mild and, therefore, non-toxic
trigger: red light.
6820.
DOI: 10.1039/D0CC03086D
3
4
A. Shibata, H. Abe, Y Ito, Molecules, 2012, 17, 2446.
J.-R. Meunier, A. Sarasin, L. Marrot, Photochem. Photobiol.,
2007, 75, 437.
A. Khodjakov, C. L. Rieder, Methods, 2006, 38, 2.
E. M. M. Manders, H. Kimura, P. R. Cook, J. Cell Biol., 1999,
144, 813.
L. Holtzer, I. Oleinich, M. Anzola, E. Lindberg, K. K. Sadhu, M.
Gonzalez-Gaitan, N. Winssinger, ACS Cent. Sci., 2016, 2, 394.
K. K. Sadhu, N. Winssinger, Chem. Eur. J., 2013, 19, 8182.
M. Rothlingshofer, K. Gorska, N. Winssinger, Org. Lett., 2012,
14, 482.
5
6
7
8
9
10 D. Chang, K. T. Kim, E. Lindberg, N. Winssinger, Bioconj.
Chem., 2018, 29, 158.
11 D. Chang, E. Lindberg, N. Winssinger, J. Am. Chem. Soc.,
2017, 139, 1444.
12 M. Bates, T. R. Blosser, X. Zhuang, Phys. Rev. Lett., 2005, 94
108101.
13 M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Science, 2007,
317, 1749.
14 A. Fülöp, X. Peng, M. M. Greenberg, A. Mokhir, Chem.
Comm., 2010, 46, 5659.
15 S. Dutta, B. Flottmann, M. Heilemann, A. Mokhir, Chem.
Comm., 2012, 48, 9664.
16 S. Dutta, A. Fülöp, A. Mokhir, Bioconj. Chem., 2013, 24, 1533.
17 M. Schikora, S. Dutta, A. Mokhir, Histochem. Cell Biol., 2014,
142, 103.
18 E. F. da Silva, B. W. Pedersen, T. Breitenbach, R. Toftegaard,
M. K. Kuimova, L. G. Arnaut, P. R. Ogilby, J. Phys. Chem. B,
2012, 116, 445.
8
3a / [Sn(P~OH)Cl2]
5
4
3
80
40
0
A
B
,
4
3b / [Sn(P~OH)Cl2]
3a / [In(P~OH)Cl]
2
1
0
4
0
2
4
0
25
50
[PS] (µM)
Time (min)
DNA2
C
D
4
DNA2-T3
19 C. Schweitzer, R. Schmidt, Chem. Rev., 2003, 103, 1685.
20 J. Qu, L. Ma, J. Zhang, S. Jockusch, I. Washington, Photochem.
Photobiol., 2013, 89, 310.
3a/2/DNA2
3a/2
2
0
2
0
ref
3a/2/DNA2-mm1
3a/2/DNA2-mm2
0,14
***
1
21 Y. Kitigawa, S. Ogasawara, D. Kosumi, H. Hashimoto, H.
***
***
Tamiaki, J. Photochem. Photobiol. A: Chemistry, 2015, 311
104.
,
0,04
N in DNA2-TN
0
2 3
22 K. T. Oppelt, E. Wöß, M. Stiftinger, W. Schöfberger, W.
Buchberger, G. Knör, Inorg. Chem., 2013, 52, 11910.
0
25
Time (min)
50
0
25
Time (min)
50
23 D. Arian, E. Clo, K. V. Gothelf, A. Mokhir, Chem. Eur. J., 2010,
Figure 1. A: Dependence of initial rate of photoreduction of 3a and 3b upon irradiation
with red light ((dF/dt)t=0, where F is emission intensity, λex= 550 nm, λem= 580 nm) from
[PS~OH]. Buffer: phosphate, 10 mM, pH 7, NaCl, 150 mM, sodium ascorbate, 10 mM, 1%
DMSO (v/v). B: Dependence of fluorescence (F/F0, where F0 is the initial fluorescence of
equimolar mixture of 3a, 2 and DNA2, each 100 nM; F/F0 is expressed in relative units
r.u.) from time of irradiation with red light of either solutions of 3a (100 nM) (trace 1)
containing 2 (100 nM) (trace 2); DNA2 (100 nM) (trace 3); 2 (100 nM), DNA2 (100 nM)
(trace 4) or control solution containing 4 (100 nM), 2 (100 nM), DNA2 (100 nM) (trace 5).
C: Dependence of photoreduction rate of 3a (100 nM) in the presence of 2 (100 nM) and
different DNA templates DNA2-TN (100 nM), where N=0, 1, 2, 3; Student’s t test, ***: p<
0.0001; D: Effects of mismatches in the DNA template on the photoreduction rate of 3a
(100 nM) in the presence of 2 (100 nM). Buffer conditions in B, C and D are as in inset A.
16, 288.
24 D. Arian, L. Kovbasyuk, A. Mokhir, J. Am. Chem. Soc., 2011,
133, 3972.
25 D. Arian, L. Kovbasyuk, A. Mokhir, Inorg. Chem., 2011, 50
,
12010.
26 A. Meyer, A. Mokhir, Angew. Chem. Int. Ed., 2014, 53, 12840.
27 A. Meyer, M. Schikora, V. Starkuviene, A. Mokhir,
Photochem. Photobiol. Sci., 2016, 15, 1120.
28 S. G. Konig, A. Mokhir, Bioorg. Med. Chem. Lett., 2013, 23
,
6544.
29 A. Meyer, M. Schikora, A. Mokhir, Chem. Comm., 2015, 51
13324.
30 V. A. Ol’shevskaya, A. N. Savchenko, A. V. Zaitsev, E. G.
,
Kononova, P. V. Petrovskii, A. A. Ramonova, V. V. Tatarskii, O.
V. Uvarov, M. M. Moisenovich, V. N. Kalinin, A. A. Shtil, J.
Organomet. Chem., 2009, 694, 1632.
Conflicts of interest
There are no conflicts to declare.
31 B. C. Robinson, B. A. Garcia, U.S. Patent US 20020137924 A1
20020926, 2002.
32 F. D. Lewis, T. Wu, Y. Zhang, R. L. Letsinger, S. R. Greenfield,
M. R. Wasielewski, Science, 1997, 277, 673.
33 M. Anzola, N. Winssinger, Chem. Eur. J, 2019, 25, 334.
34 S. Angerani, N. Winssinger, Chem. Eur. J., 2019, 25, 6661.
Notes and references
‡
This project is funded by German Research Council (DFG, MO1418/8-1). Support
of G.K. by the Austrian Science Fund (FWF project W-1250 DK9: "Photochemical
Control of Cellular Processes") is also gratefully acknowledged. The partial support
was provided by DFG/RSF (DFG MO 1418/11-1, RSF 19-44-04111(DNA template azo
dye reduction)) and Emerging Field Initiative of Friedrich-Alexander-University of
Erlangen-Nürnberg, project “Chemistry in live cells”.
1
A. P. Silverman, E. T. Kool, Chem. Rev., 2006, 106, 3775.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins