The Journal of Organic Chemistry
Article
(3) (a) Screttas, C. G.; Micha-Screttas, M.; Steele, B. R. J. Organomet.
Chem. 1997, 536−537, 149−163.
(4) Di-tert-butylbiphenyl has a reduction potential of −2.14 V against
a mercury pool: Curtis, M. D.; Allred, A. L. J. Am. Chem. Soc. 1965, 87,
2554−2563.
(Presumably impurities were being reduced along with the
thioanisole.) The values reported are the average of titrations 2−4.
(19) The lithium metal (with 0.9% sodium) was purchased as a 3.2
mm diameter wire that weighed approximately 43 mg/cm. Initially, the
Li wire was weighed under hexanes. We later found that just adding a
10-fold excess of Li wire, calculated by length, was suitable for most of
the procedure. The measured length of wire was rinsed with hexanes
and cut with scissors into ca. 2 mm pieces directly into the THF
solution under a stream of argon.
(5) LDMAN: (a) Cohen, T.; Matz, J. R. Synth. Commun. 1980, 10,
313−317. (b) Cohen, T.; Sherbine, J. P.; Matz, J. R.; Hutchins, R. R.;
McHenry, B. M.; Willey, P. R. J. Am. Chem. Soc. 1984, 106, 3245−
3252. (c) Ivanov, R.; Marek, I.; Cohen, T. Tetrahedron Lett. 2010, 51,
174−176.
(20) Ferguson, M. D.; Donohoe, T. J.; Jones, C. R. Lithium 4,4′-Di-
tert-butylbiphenylide. e-EROS Encyclopedia of Reagents for Organic
Synthesis 2014, 1−11.
́
(6) (a) Yus, M.; Ramon, D. J. J. Chem. Soc., Chem. Commun. 1991,
398−400. (b) Gil, J. F.; Ramon, D. J.; Yus, M. Tetrahedron 1994, 50,
3437−3446. (c) Foubelo, F.; Moreno, B.; Soler, T.; Yus, M.
Tetrahedron 2005, 61, 9082−9096.
(21) Eisch, J. J. J. Org. Chem. 1963, 28, 707−710.
(22) (a) Mudryk, B.; Cohen, T. J. Am. Chem. Soc. 1991, 113, 1866−
1867. (b) Ramon, D. J.; Yus, M. Tetrahedron 1992, 48, 3585−3588.
(7) (a) Screttas, C. G.; Micha-Screttas, M. J. Org. Chem. 1978, 43,
1064−1071. (b) Screttas, C. G.; Micha-Screttas, M. J. Org. Chem.
1979, 44, 713−719.
(23) Streiff, S.; Ribeiro, N.; Des
347.
́
aubry, L. Chem. Commun. 2004, 346−
(24) For a review of the ether cleavage by alkyllithium reagents and
alkali metals, see: Maercker, A. Angew. Chem., Int. Ed. Engl. 1987, 26,
972−989.
(25) Bates, R.; Kroposki, L.; Potter, D. J. Org. Chem. 1972, 37, 560−
562.
(8) Selected examples of alkyllithium generation using LiDBB:
(a) Rawson, D. J.; Meyers, A. I. Tetrahedron Lett. 1991, 32, 2095−
2098. (b) Vlaar, C. P.; Klumpp, G. W. Tetrahedron Lett. 1991, 32,
2951−2952. (c) Rychnovsky, S. D.; Skalitzky, D. J. J. Org. Chem. 1992,
57, 4336−4339. (d) Rot, N.; Bickelhaupt, F. Organometallics 1997, 16,
5027−5031. (e) Rychnovsky, S. D.; Buckmelter, A. J.; Dahanukar, V.
H.; Skalitzky, D. J. J. Org. Chem. 1999, 64, 6849−6860. (f) Malathong,
V.; Rychnovsky, S. D. Org. Lett. 2009, 11, 4220−4223. (g) Schner-
(26) Rautenstrauch, V. Angew. Chem., Int. Ed. Engl. 1975, 14, 259−
260.
(27) The addition of ethene (from THF decomposition) to another
alkyllithium reagent in solution has been reported. For example, see:
(a) Maercker, A.; Stumpe, R. W. Tetrahedron Lett. 1979, 20, 3843−
́ ́
mann, M. J.; Untiedt, N. L.; Jimenez-Oses, G.; Houk, K. N.; Overman,
L. E. Angew. Chem., Int. Ed. 2012, 51, 9581−9586. (h) Shen, Z.-L.;
Sommer, K.; Knochel, P. Synthesis 2015, 47, 2617−2630.
3846. (b) See Scheme 2: Langer, J.; Kohler, M.; Fischer, R.; Dundar,
̈
̈
F.; Gorls, H.; Westerhausen, M. Organometallics 2012, 31, 6172−6182.
̈
(9) Selected examples of reductions using LiDBB: (a) Sinz, C. J.;
Rychnovsky, S. D. Angew. Chem., Int. Ed. 2001, 40, 3224−3227.
(b) Donohoe, T. J.; House, D. J. Org. Chem. 2002, 67, 5015−5018.
(c) Owen, R. M.; Roush, W. R. Org. Lett. 2005, 7, 3941−3944.
(d) Donohoe, T. J.; Johnson, D. J.; Mace, L. H.; Thomas, R. E.; Chiu,
J. Y. K.; Rodrigues, J. S.; Compton, R. G.; Banks, C. E.; Tomcik, P.;
Bamford, M. J.; Ichihara, O. Org. Biomol. Chem. 2006, 4, 1071−14.
(e) Zhou, X.-T.; Carter, R. G. Angew. Chem., Int. Ed. 2006, 45, 1787−
1790. (f) Donohoe, T. J.; Jahanshahi, A.; Tucker, M. J.; Bhatti, F. L.;
Roslan, I. A.; Kabeshov, M.; Wrigley, G. Chem. Commun. 2011, 47,
5849−5851. (g) Li, X.; Saleh, Z.; Egri, B.; Hourani, A.; Harding, L.;
Baryal, K. N.; Zhu, J. Tetrahedron Lett. 2015, 56, 1420−1422.
(10) (a) La Cruz, T. E.; Rychnovsky, S. D. Org. Lett. 2005, 7, 1873−
1875. (b) Vellucci, D.; Rychnovsky, S. D. Org. Lett. 2007, 9, 711−714.
(11) (a) Rychnovsky, S. D.; Takaoka, L. R. Angew. Chem., Int. Ed.
2003, 42, 818−820. (b) Takaoka, L. R.; Buckmelter, A. J.; LaCruz, T.
E.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005, 127, 528−529.
(12) Nitrogen is reduced by lithium and should not be used in the
preparation of LiDBB. (a) Lam, H. K. H.; Schafer, G. H. Preparation of
(28) Vinyllithium itself is reported to be stable at room temperature
over many days in THF-d8: Bauer, W.; Griesinger, C. J. Am. Chem. Soc.
1993, 115, 10871−10882.
(29) Reactions rates of arylLi with THF: (a) See Figure 7 in Langer,
J.; Kohler, M.; Fischer, R.; Dundar, F.; Gorls, H.; Westerhausen, M.
̈
̈
̈
Organometallics 2012, 31, 6172−6182. (b) See comparision of
stability of alkyllithium reagents in ether: Gilman, H.; Haubein, A. H.;
Hartzfeld, H. J. Org. Chem. 1954, 19, 1034−1040.
(30) Stanetty, P.; Mihovilovic, M. D. J. Org. Chem. 1997, 62, 1514−
1515.
(31) The reaction of lithium metal with ethene (ref 26) is reported to
only take place in the presence of an arene such as biphenyl or
naphthalene.
(32) The solution was warmed to 0 °C for 1 h prior to use and
subsequently cooled back to −25 °C after use.
(33) Perry, M.; Hill, R.; Rychnovsky, S. Org. Lett. 2013, 15, 2226−
2229.
(34) Cohen, T.; Stokes, S. Tetrahedron Lett. 1993, 34, 8023−8024.
́
(35) Cuadrado, P.; Gonzalez-Nogal, A. Tetrahedron Lett. 2000, 41,
1111−1114.
Lithium Nitride. U.S. Patent 2,866,685, Dec. 30, 1958. (b) Doneges, E.
̈
(36) Gerstenberger, B.; Konopelski, J. J. Org. Chem. 2005, 70, 1467−
Lithium Nitride. In Handbook of Preparative Inorganic Chemistry, 2nd
ed.; Brauer, G., Ed.; Academic Press: 1963, New York; Vol. 1, p 984.
(c) Goshome, K.; Miyaoka, H.; Yamamoto, H.; Ichikawa, T.; Ichikawa,
T.; Kojima, Y. Mater. Trans. 2015, 56, 410−414.
1470.
(37) Mojtahedi, M.; Akbarzadeh, E.; Sharifi, R.; Abaee, M. Org. Lett.
2007, 9, 2791−2793.
(38) Brandt, D.; Bellosta, V.; Cossy, J. Org. Lett. 2012, 14, 5594−
(13) Bartmann, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 653−654.
(14) Mudryk, B.; Cohen, T. J. Org. Chem. 1989, 54, 5657−5659.
(15) (a) Liu, T.; Zhao, X.; Lu, L.; Cohen, T. Org. Lett. 2009, 11,
5597.
(39) Cunico, R.; Lewis, B. J. Org. Chem. 1980, 45, 4797−4798.
(40) Guan, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.;
Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268−3269.
4576−4579. (b) Muller, D. S.; Untiedt, N. L.; Dieskau, A. P.; Lackner,
̈
G. L.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 660−663. (c) Perry,
M. A.; Hill, R. R.; Leong, J. J.; Rychnovsky, S. D. Org. Lett. 2015, 17,
3268−3271.
(16) For example, see: (a) Mudryk, B.; Cohen, T. Org. Synth. 1995,
72, 173−176. (b) Shiner, C. S.; Tsunoda, T.; Goodman, B. A. J. Am.
Chem. Soc. 1989, 111, 1381−1392.
(17) (a) Kennedy, N.; Liu, P.; Cohen, T. Angew. Chem., Int. Ed. 2016,
55, 383−386. (b) Yang, A.; Butela, H.; Deng, K.; Doubleday, M. D.;
Cohen, T. Tetrahedron 2006, 62, 6526−6535. (c) Kennedy, N.; Lu, G.;
Liu, P.; Cohen, T. J. Org. Chem. 2015, 80, 8571−8582.
(18) The titration procedure is reported in the Experimental Section.
The first titration in each run was unreliable and was discarded.
H
J. Org. Chem. XXXX, XXX, XXX−XXX