1848
M. Sandri et al.
LETTER
carbohydrates; CHA functionalization with biologically
active carbohydrate epitopes can upgrade this material
from being biomimetic to being a bioactive material that
is able to cross-talk with the surrounding cellular environ-
ment.
Supporting Information for this article is available online at
Acknowledgment
We gratefully acknowledge FONDAZIONE CARIPLO, project
2008/3175 and MIUR, project FIRB RBPO68JL9 for financial sup-
port.
References and Notes
(1) (a) Lutolf, M. P.; Hubbell, J. A. Nature Biotechnol. 2005, 23,
47. (b) Ratner, B. D.; Bryant, S. J. Annu. Rev. Biomed. Eng.
2004, 6, 415P.
(2) (a) Yoshikawa, H.; Myoui, A.; Tamai, N.; Murase, T.
J. Artif. Organs 2005, 8, 131. (b) Langer, R.; Vacanti, J. P.
Tissue Eng. Sci. 1993, 260, 920.
(3) Schulz-Ekloff, G.; Wöhrle, D.; van Duffel, B.; Schoonheydt,
R. A. Micropor. Mesopor. Mat. 2002, 51, 91.
(4) (a) Hench, L. L.; Polak, J. M. Science 2002, 295, 1014.
(b) Chem. Eng. J. 2007, 137, Issue 1.
(5) Zurlinden, K.; Laub, M.; Jennissen, H. P. Materialwiss.
Werkst. 2005, 36, 820.
Figure 2 FTIR analysis of CHA samples. Panels A and B: ATR/
FTIR absorption spectra of hydroxyapatite (CHA) and of CHA
functionalized with 3-aminopropyltriethoxysilane (CHA-APTES)
and with compounds 1–3 (CHA-1, CHA-2, CHA-3). Panels C and D:
Second derivatives of the absorption spectra reported in Panels A and
B displayed in different spectral regions. Spectra are reported after
normalization to phosphate absorption at 1017 cm–1.
(6) See for example: (a) Balasundaram, G.; Sato, M.; Webster,
T. J. Biomaterials 2006, 27, 2798. (b) Durrieu, M.; Pallu,
S.; Guillemot, F.; Bareille, R.; Amédée, J.; Baquey, C. H.
J. Mater. Sci.: Mater. Med. 2004, 15, 779. (c) Nelson, M.;
Balasundaram, M.; Webster, T. J. Int. J. Nanomed. 2006, 1,
339.
(7) Hersel, U.; Dahmen, C.; Kessler, H. Biomaterials 2003, 24,
4385.
(8) Kazuaki, O.; Jamey, D. Cell 2006, 126, 855.
(9) (a) Toole, B. P. J. Clin. Invest. 2000, 106, 335. (b)Acharya,
C.; Hinz, B.; Kundu, S. C. Biomaterials 2008, 29, 4665.
(c) Pourcelle, V.; Freichels, H.; Stoffelbach, F.; Velty, R. A.;
Jerome, C.; Brynaert, J. M. Biomacromolecules 2009, 10,
966.
(10) Du, Y.; Linhardt, R. J. Tetrahedron 1998, 54, 9913.
(11) Landi, E.; Tampieri, A.; Celotti, G.; Langenati, R.; Sandri,
M.; Sprio, S. Biomaterials 2005, 26, 2835.
(12) Cheng, K.; Landry, C. C. J. Am. Chem. Soc. 2007, 129, 9674.
(13) Hosomi, A.; Sakata, Y.; Sakurai, H. Tetrahedron Lett. 1984,
22, 2383.
(14) (a) Cook, B. N.; Bhakta, S.; Biegel, T.; Bowman, K. G.;
Armstrong, J. I.; Hemmerich, S.; Bertozzi, C. R. J. Am.
Chem. Soc. 2000, 122, 8612. (b) Tang, P. C.; Levy, D. E.;
Holme, K. M. Glycomed Inc. US5508387, 1996.
(15) Huang, L.; Teumelsan, N.; Huang, X. Chem. Eur. J. 2006,
12, 5246.
(16) Landi, E.; Tampieri, A.; Celotti, G.; Vichi, L.; Sandri, M.
Biomaterials 2004, 25, 1763.
(17) (a) Gibson, I. R.; Bonfied, W. J. Biomed. Mater. Res. 2002,
59, 697. (b) Rehman, I.; Bonfield, I. R. J. Mater. Sci.: Mater.
Med. 1997, 8, 1.
(18) Susi, H.; Byler, D. M. Methods Enzymol. 1986, 130, 291.
(19) Petkova, V.; Yaneva, V. J. Therm. Anal. Calorim. 2010, 99,
179.
the formation of an amide bond. Indeed, this component,
which is absent in the CHA spectrum, can be assigned to
the NH2 bending vibration in the case of CHA-APTES
and to the NH bending (Amide II band) in that of CHA-2
(Figure 2 C). Similar results were obtained for the biodec-
oration with carbohydrates 1 and 3.
Many additional bands were also observed after biodeco-
ration that confirmed the success of our procedure. For in-
stance, the absorption in the 720–760 cm–1 region can be
assigned to the aromatic ring vibrations (Figure 2 D). We
should also report that materials CHA-APTES, CHA-1,
CHA-2, and CHA-3 display a component around 817 cm–1,
which is absent in CHA, that can be assigned to a vibra-
tional –O-Si- mode.19
With these data in hand, we can affirm that carbonated hy-
droxyapatite has been successfully biodecorated with car-
bohydrate derivatives. It should be noted that classical
organic coupling reactions have been applied for the co-
valent functionalization of inorganic materials such as
CHA. The presented procedure opens the way to the ap-
plication of organic chemistry to the covalent biofunction-
alization of CHA, which is an excellent biomimetic
material, with suitable classes of biomolecules, such as
Synlett 2011, No. 13, 1845–1848 © Thieme Stuttgart · New York