Glycosides from the Root of Iodes cirrhosa
Journal of Natural Products, 2008, Vol. 71, No. 4 653
1
1558, 1513, 1259, 1032 cm-1; H NMR (DMSO-d6, 500 MHz) data,
Cell Culture and MTT Assay. PC12 cells at a density of 5 × 103
cells per well in 96-well plates were suspended in Dulbecco’s modified
Eagle’s medium (DMEM, Gibico) supplemented with 5% fetal bovine
serum (FBS, Hyclone), 5% horse serum, penicillin (100 IU/mL),
streptomycin (100 µg/mL), and L-glutamine (2 µM) and incubated in
a CO2 incubator (5%) at 37 °C for 24 h. Then the cells were pretreated
with test compounds (10-5 M) and NGF (50 ng/mL), respectively, for
another 24 h before exposed to glutamate (20 µM). After incubation
for an additional 24 h, MTT (0.5 mg/mL) was added to the medium
and incubated for 4 h. Absorbance was measured at 570 nm using a
microplate reader, and the cell viability was evaluated by relative
protection, which was calculated as 100 × [optical density (OD) of
test compound + glutamate-treated culture - OD of glutamated-treated
culture]/[OD of control culture - OD of glutamated-treated culture].46
see Table 1; 13C NMR (DMSO-d6, 125 MHz) data, see Table 2; ESIMS
m/z 563 [M + Na]+ and 539 [M - H]–; HRESIMS m/z 563.2097 [M
+ Na]+ (cacld for C26H34O12Na 563.2104).
(-)-(2R)-1-O-ꢀ-D-Glucopyranosyl-2-{2-methoxy-4-[(E)-formyl-
vinyl]phenoxyl}propane-3-ol (6): yellowish, amorphous powder; [R]20
D
-7.5 (c 0.08, MeOH); UV (MeOH) λmax (log ꢀ) 202 (4.4), 224 (4.3),
237 (4.3), 334 (4.5) nm; IR (KBr) νmax 3379, 2921, 1662, 1595, 1511,
1272, 1137, 1078 cm-1; 1H NMR (CD3OD, 500 MHz) data, see Table
1; 13C NMR (CD3OD, 125 MHz) data, see Table 2; ESIMS m/z 437
[M + Na]+ and 453 [M + K]+; HRFABMS m/z 437.1406 [M + Na]+
(calcd for C19H26O10Na, 437.1424).
Leptolepisol C 4-O-ꢀ-D-glucopyranoside (7): colorless gum; [R]20
D
-6.0 (c 0.10, MeOH); UV (MeOH) λmax (log ꢀ) 208 (4.8), 279 (4.0)
nm; IR (KBr) νmax 3426, 1608, 1514, 1268, 1030 cm-1 1H NMR
;
Acknowledgment. The authors are grateful to Mr. W.-Y. He for
his assistance in obtaining NMR spectra. Financial support from the
New Century Excellent Talent (NCET) Program of Chinese Ministry
of Education, the Natural Sciences Foundation of China (NSFC, Grant
No. 20432030), the National “973” Program of China (Grant No.
2004CB13518906), and the Program for Changjiang Scholars and
Innovative Research Team in University (PCSIRT, Grant No. IRT0514)
is gratefully acknowledged.
(DMSO-d6, 500 MHz) data, see Table 1; 13C NMR (DMSO-d6, 125
MHz) data, see Table 2; ESIMS m/z 683 [M + Na]+, 699 [M + K]+,
and 659 [M - H]–; HRESIMS m/z 683.2338 [M + Na]+ (calcd for
C33H40O14Na 683.2316).
(-)-(7R,8S)-Syringylglycerol 8-O-ꢀ-D-glucopyranoside (8): white,
amorphous powder; [R]20 -14.3 (c 0.30, MeOH); UV (MeOH) λmax
D
(log ꢀ) 211 (4.2), 232 (3.7), 271 (3.4) nm; IR (KBr) νmax 3374, 1612,
1
1513, 1228, 1073, 1043 cm-1; H NMR (DMSO-d6, 400 MHz) and
13C NMR (DMSO-d6, 125 MHz) data, see Table 3; ESIMS m/z 429
[M + Na]+ and 445 [M + K]+.
Supporting Information Available: Detailed extraction and isola-
tion procedure including known compounds. Figure S1 for HMBC
correlation scheme of compounds 1 and 7. Figures S2 and S3 of the
CD spectra of compounds 1-5, 10, 11, 1a-5a, 10a, and 11a. 1D NMR
spectra of compounds 1-9. Tables S1-S15 of the NMR data for
1a-5a, 8a-13a, 1b, 2b, 5b, 5, and 8-16 in different solvents. This
(-)-(7R,8S)-Guaiacylglycerol 8-O-ꢀ-D-glucopyranoside (9): white,
amorphous powder; [R]20 –21.5 (c 0.55, MeOH); UV (MeOH) λmax
D
(log ꢀ) 230 (3.8), 278 (3.2) nm; IR (KBr) νmax 3383, 1605, 1517, 1272,
1073, 1028 cm-1 1H NMR (DMSO-d6, 400 MHz) and 13C NMR
;
(DMSO-d6, 125 MHz) data, see Table 3; ESIMS m/z 399 [M + Na]+
and 415 [M + K]+.
Enzymatic Hydrolysis of 1–13. A solution of each compound in
H2O (3 mL) was individually hydrolyzed with ꢀ-glucosidase (10 mg,
Almonds Lot 1264252, Sigma-Aldrich) at 37 °C for 24 or 36 h. Each
reaction mixture was extracted with EtOAc (3 × 3 mL) to yield the
individual EtOAc extract and H2O phase after removing the solvents.
The EtOAc extracts were separately chromatographed over silica
gel, eluting with CH3Cl-MeOH (12:1) for the hydrolysates from 1-7
(3–12 mg), 10 (6 mg), and 11 (11 mg) to yield aglycones 1a–7a, 10a,
and 11a, respectively, and eluting with CH3Cl-MeOH (10:1) for the
hydrolysates from 8, 9, 12, and 13 (each 10 mg) to yield 8a, 9a, 12a,
and 13a.
References and Notes
(1) (a) Editorial Committee of Chinese Materia Medica, State Administra-
tion Bureau of Traditional Chinese Medicine. Chinese Materia Medica
(Zhonghua Bencao); Shanghai Science & Technology Press: Shanghai,
2000; Vol. 5, pp 227–228. (b) Editorial Committee of Chinese Flora,
Chinese Academy of Sciences. Chinese Flora (Zhongguo Zhiwu Zhi);
Science Press: Beijing, 1981; Vol. 46, pp 54–56..
(2) Wang, Y.; Wang, S. J.; Mo, S. Y.; Li, S.; Yang, Y. C.; Shi, J. G. Org.
Lett. 2005, 7, 4733–4736.
(3) Xue, Z.; Li, S.; Wang, S. J.; Wang, Y. H.; Yang, Y. C.; Shi, J. G.;
He, L. J. Nat. Prod. 2006, 69, 907–913.
(4) Sinkkonen, J.; Karonen, M.; Liimatainen, J.; Pihlaja, K. Magn. Reson.
Chem. 2006, 44, 633–636.
(5) Gao, J. J.; Jia, Z. J. Indian J. Chem. 1995, 34B, 466–468.
(6) Wang, C. Z.; Jia, Z. J. Planta Med. 1997, 63, 241–244.
(7) Kijima, H.; Ide, T.; Otsuka, H.; Ogimi, C.; Hirata, E.; Takushi, A.;
Takeda, Y. Phytochemistry 1997, 44, 1551–1557.
(8) Ishikawa, T.; Fujimatu, E.; Kitajima, J. Chem. Pharm. Bull. 2002,
50, 1460–1466.
(9) Mohamed, K. M. Phytochemistry 2001, 58, 615–618.
(10) Hudson, C. S.; Dale, J. K. J. Am. Chem. Soc. 1917, 39, 320–328.
(11) Morikawa, T.; Matsuda, H.; Nishida, N.; Ohgushi, T.; Yoshikawa,
M. Chem. Pharm. Bull. 2004, 52, 1387–1390.
(12) (a) Gellerstedt, G.; Lundquist, K.; Wallis, A. F. A.; Zhang, L. M.
Phytochemistry 1995, 40, 263–265. (b) Johansson, A.; Lundquist, K.;
Stomberg, R. Acta Chem. Scand. 1992, 46, 901–905.
(13) Deyama, T.; Ikawa, T.; Kitagawa, S.; Nishibe, S. Chem. Pharm. Bull.
1987, 35, 1803–1807.
(14) (a) Yuan, Z.; Tezuka, Y.; Fan, W. Z.; Kadota, S.; Li, X. Chem. Pharm.
Bull. 2002, 50, 73–77. (b) Braga, A. C. H.; Zacchino, S.; Badano, H.;
Sierra, M. G.; Rúveda, E. A. Phytochemistry 1984, 23, 2025–2028.
(15) Matsuda, N.; Kikuchi, M. Chem. Pharm. Bull. 1996, 44, 1676–1679.
(16) Besombes, S.; Robert, D.; Utille, J.-P.; Taravel, F. R.; Mazeau, K. J.
Agric. Food Chem. 2003, 51, 34–42.
Compound 1a (2.0 mg): [R]20D +1.5 (c 0.20, MeOH), CD (MeOH)
236 (∆ꢀ –1.26); 2a (2.1 mg): [R]20 –7.9 (c 0.21, MeOH), CD
D
(MeOH) 238 (∆ꢀ +1.46); 3a (1.4 mg): [R]20 –2.8 (c 0.14, MeOH),
D
CD (MeOH) 236 (∆ꢀ –0.58); 4a (1.8 mg): [R]20D –4.2 (c 0.18, MeOH),
CD (MeOH) 238 (∆ꢀ +0.58); 5a (7.4 mg): [R]20 +16.9 (c 0.67,
D
MeOH), CD (MeOH) 235 (∆ꢀ +2.59); 6a (3.2 mg); 7a (2.2 mg): [R]20
D
+4.0 (c 0.22, MeOH); 8a (4.0 mg): [R]20 –19.6 (c 0.25, MeOH); 9a
D
(4.0 mg): [R]20 –12.4 (c 0.33, MeOH); 10a (2.1 mg): [R]20 –4.0 (c
D
D
0.21, MeOH), CD (MeOH) 236 (∆ꢀ +0.50); 11a (3.8 mg): [R]20D +2.4
(c 0.38, MeOH), CD (MeOH) 236 (∆ꢀ +0.58); 12a (4.5 mg): [R]20
D
+25.1 (c 0.30, MeOH); 13a (4.5 mg): [R]20 +17.0 (c 0.30, MeOH).
D
1H NMR and 13C NMR data of 1a-5a and 8a-13a in different solvents,
see Tables S1-S3, S6, and S11-S13 in the Supporting Information.
1H NMR (Me2CO-d6, 600 MHz) and 13C NMR (Me2CO-d6, 150 MHz)
data of 6a and 7a were identical with that reported in the literature.20,23
The aqueous phases of the hydrolysates of 1-13 were separately
subjected to CC over silica gel eluted with MeCN-H2O (8:1) to yield
glucose with positive optical rotations, and the [R]20 values ranged
D
from +42.5 to +49.7 (c in a range of 0.11 to 0.31, H2O). The solvent
system MeCN-H2O (6:1) was used for TLC identification of glucose
(Rf, 0.33).
Preparation of Acetonide Derivatives (1b, 2b, and 5b). A solution
of 1a (0.8 mg) in dry acetone (1 mL) was treated with 2,2-
dimethoxypropane (0.1 mL) and (1S)-(+)-camphorsulforic acid (CSA)
(1 mg, 0.004 mmol), and the mixture was stirred at ambient temperature
for 4 h. The reaction mixture was quenched by addition of triethylamine
and then evaporated in Vacuo to give a crude product. The residue was
purified by reversed-phase preparative HPLC using MeOH-H2O
(64:36) to afford acetonide 1b (0.6 mg). Similarly, 2a (1.7 mg) and 5a
(2.1 mg) were transformed into acetonide derivatives 2b (1.5 mg) and
(17) Lourith, N.; Katayama, T.; Suzuki, T. J. Wood Sci. 2005, 51, 370–
378.
(18) DellaGreca, M.; Molinaro, A.; Monaco, P.; Previtera, L. Phytochem-
istry 1994, 35, 777–779.
(19) Arnoldi, A.; Merlini, L J. Chem. Soc., Perkin Trans 1 1985, 2555,
2557.
(20) Sy, L. K.; Brown, G. D. Phytochemistry 1999, 50, 781–785.
(21) Matsuda, N.; Kikuchi, M. Annu. Rep. Tohoku Coll. Pharm. 1996, 43,
75–78.
(22) (a) Agrawal, P. K.; Rastogi, R. P.; Osterdahl, B. G. Org. Magn. Reson.
1983, 21, 119–121. (b) Li, S. M.; Iliefski, T.; Lundquist, K.; Wallis,
A. F. A. Phytochemistry 1997, 46, 929–934. (c) Kim, T. H.; Ito, H.;
1
5b (1.6 mg), respectively. For H NMR data (600 MHz) of 1b, 2b,
and 5b in CDCl3 see Tables S1 and S2 in the Supporting Information.