4
Tetrahedron
20, 1871; (e) Hayashi, T.; Konishi, M.; Kumada, M. J.
Organomet. Chem. 1980, 186, C1.
Iwasaki, T.; Takagawa, H.; Singh, S. P.; Kuniyasu, H.; Kambe, N.
J. Am. Chem. Soc. 2013, 135, 9604.
(a) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.; Kambe, N.
Angew. Chem. Int. Ed. 2007, 46, 2086; (b) Hintermann, L.; Xiao,
L.; Labonne, A. Angew. Chem. Int. Ed. 2008, 47, 8246; (c) Ren,
P.; Stern, L.-A.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 9110.
(a) Lohre, C.; Droge, T.; Wang, C.; Glorius, F. Chem. Eur. J.
2011, 17, 6052; (b) Joshi-Pangu, A.; Wang, C. Y.; Biscoe, M. R.
J. Am. Chem. Soc. 2011, 133, 8478; (c) Joshi-Pangu, A.; Biscoe,
M. R. Synlett 2012, 1103.
product in a 66% yield with good selectivity (isomerized
product was not observed in NMR). On the other hand, 3-
methylpent-3-yl-MgCl was not tolerated (Scheme 5).
3.
4.
5.
6.
7.
Ando, S.; Matsunaga, H.; Ishizuka, T. Tetrahedron 2013, 69,
1687.
A Ni(0)–Ni(II) cycle and a Ni(I)–Ni(III) cycle have been proposed
for similar reactions, and Biscoe and co-workers discussed about
the catalytic cycle for this reaction (see reference 5c). For
examples of other discussions about catalytic cycles for similar
processes, see; (a) Morrell, D. G.; Kochi, J. K. J. Am. Chem. Soc.
1975, 97, 7262; (b) Saito, S.; Sakai, M.; Miyaura, N. Tetrahedron
Lett. 1996, 37, 2993; (c) McGuinness, D. S.; Cavell, K. J.;
Skelton, B. W.; White, A. H. Organometallics 1999, 18, 1596; (d)
Böhm, V. P. W.; Gstöttmayr, C. W. K.; Weskamp, T.; Herrmann,
W. A. Angew. Chem. Int. Ed. 2001, 40, 3387; (e) Sato, Y.;
Sawaki, R.; Mori, M. Organometallics 2001, 20, 5510; (f)
Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc.
2004, 126, 11113; (g) Dible, B. R.; Sigman, M. S.; Arif, A. M.
Inorg. Chem. 2005, 44, 3774; (h) Jones, G. D.; Martin, J. L.;
McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.; Brandon,
R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J.
Am. Chem. Soc. 2006, 128, 13175; (i) Phapale, V. B.; Guisan-
Ceinos, M.; Bunuel, E.; Cardenas, D. J. Chem. Eur. J. 2009, 15,
12681; (j) Miyazaki, S.; Koga, Y.; Matsumoto, T.; Matsubara, K.
Chem. Commun. 2010, 46, 1932; (k) Tekavec, T. N.; Zuo, G.;
Simon, K.; Louie, J. J. Org. Chem. 2006, 71, 5834.
Scheme 5. NHC-Ni catalyzed KTC coupling using branched
tert-alkyl Grignard reagents.
In conclusion, we report the KTC coupling of aryl bromides
and tert-alkyl Grignard reagents using our original NHC-Ni
catalyst. DHASI-type NHC ligands effectively suppressed the
pathways leading to the isomerized product. We also discovered
that NMP as a co-solvent is useful in suppressing the reduction,
and the optimal conditions we established allowed us to reduce
the catalyst loading to 0.5 mol%. More challenging ortho-
substituted aryl bromides were also successfully converted using
increased amounts of catalyst and NMP.
Acknowledgments
This research was financially supported in part by a Grant-in-
Aid for Young Scientists (B) (No.15K18832) from JSPS.
8.
9.
This observation is simlar to the report by Hermann and co-
workers, in which they proposed the NHC-Ni(0) complex is the
catalytically active species. See reference 7d.
(a) Cahiez, G.; Marquais, S. Synlett 1993, 45; (b) Cahiez, G.;
Marquais, S. Tetrahedron Lett. 1996, 37, 1773; (c) Cahiez, G.;
Avedissian, H. Synthesis 1998, 1199; (d) Cahiez, G.; Chaboche,
C.; Jézéquel, M. Tetrahedron 2000, 56, 2733.
Supplementary Material
Supplementary data (experimental details and the
characterization data) associated with this article can be found, in
the online version, at
10. For examples of reactions using NMP as an effective co-solvent,
see; (a) Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew.
Chem. Int. Ed. 1996, 34, 2723; (b) Fürstner, A.; Leitner, A.
Angew. Chem. Int. Ed. 2002, 41, 609; (c) Fürstner, A.; Leitner, A.;
Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856; (d)
Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527; (e)
Hadei, N.; Kantchev, E. A. B.; O'Brie, C. J.; Organ, M. G. Org.
Lett. 2005, 7, 3805.
References and notes
1.
2.
Reviews; (a) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004,
346, 1525; (b) Frisch, A. C.; Beller, M. Angew. Chem. Int. Ed.
2005, 44, 674; (c) Glorius, F. Angew. Chem. Int. Ed. 2008, 47,
8347; (d) Rudolph, A.; Lautens, M. Angew. Chem. Int. Ed. 2009,
48, 2656; (e) Hu, X. Chem. Sci. 2011, 2, 1867.
For earlier examples of the coupling reaction using tert-alkyl
nucleophiles, see (a) Hayashi, T.; Konishi, M.; Yokota, K.-i.;
Kumada, M. Chem. Lett. 1980, 767; (b) Bell, T. W.; Hu, L. Y.;
Patel, S. V. J. Org. Chem. 1987, 52, 3847; (c) Daniel Rehm, J. D.;
Ziemer, B.; Szeimies, G. Eur. J. Org. Chem. 1999, 2079; (d)
Hayashi, T.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1979,
11. These are shown for example. DMI was not effective in the
reaction with lowered catalyst loading.
12. It should be noted that the Ni catalyst developed by Lei and co-
workers, which worked well for the coupling sec-alkyl zinc
nucleophile, gave only isobutylated product in the case of the
coupling of ethyl 2-iodobenzoate and tert-butyl zinc reagent. See;
Luo, X.; Zhang, H.; Duan, H.; Liu, Q.; Zhu, L.; Zhang, T.; Lei, A.
Org. Lett. 2007, 9, 4571.