3964
S. Peace et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3961–3964
Table 6
Selected DMPK, developability and chemokine selectivity data
Compound
Rat PK summary
T 1/2 iv, po Cl (mL/min/
In vitro developability profile
p450 profile (pIC50
Chemokine selectivity
F
Vd (L/
hERGa
)
CCR2
CCR1
CCR4
CCR5
(%)
(h)
kg)
kg)
(pIC50
)
(pKi)
(pKi)
(pKi)
(pIC50)
1A2 2C19 2C9
2D6
3A4
24
31
35
37
39
70
97
37
75
58
6.5, 5.9
4.5, 4.5
1.1, —
0.8, 2.3
1.2, —
0.6
0.71
13
4.3
2.4
0.2
5.1
<4.5
<4.2
<4.5
—
4.4 4.96
4.4 4.4
<4.0 5.06
<4.0 4.65
<4.0 5.18
5.38
4.67
5.3
5.87 <4.0
5.97 <4.0
4.27 5.0
8.5
8.9
7.3
7.7
6.7
7.0
6.8
6.4
6.1
5.8
5.9
—
6.2
6.6
0.12
0.47
0.34
0.2
4.0
4.0
<4.0
4.69 7.6
4.71 8.0
6.36 7.9
<10%b
40%b
—
a
hERG fluorescence-polarization binding assay.
% inhibition at 10 lM antagonist.
b
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Charo, I. F.; Ransohoff, R. M. N. Eng. J. Med. 2006, 354, 610.
2. (a) Boring, L.; Gosling, J.; Cleary, M.; Charo, I. F. Nature 1998, 394, 894; (b)
Buckle, D. R.; Hedgecock, C. J. R. Drug Discovery Today 1997, 2, 325; (iii) Reape,
T. J.; Groot, P. H. Atherosclerosis 1999, 147, 213; (iv) Dawson, T. C.; Kuziel, W. A.;
Osahar, T. A.; Maeda, N. Atherosclerosis 1999, 143, 205.
3. (a) Ruth, J. H.; Rottman, J. B.; Katschke, K. J., Jr.; Qin, S.; Wu, L.; LaRosa, G.;
Ponath, P.; Pope, R. M.; Koch, A. E. Arthritis Rheum. 2001, 44, 2750; (b) Carulli,
M. T.; Ong, V. H.; Ponticos, M.; Xu, S.; Abraham, D. J.; Black, C. M.; Denton, C. P.
Arthritis Rheum. 2005, 52, 3772.
4. Xia, M.; Sui, Z. Expert Opin. Ther. Pat. 2009, 19, 295.
5. Baba, M.; Osamu, N.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Iizawa, Y.;
Shiraishi, M.; Aramaki, Y.; Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 5698.
6. Butora, G.; Jiao, R.; Parsons, W. H.; Vicario, P. P.; Jin, H.; Ayala, J. M.; Cascieri, M.
A.; Yang, L. H. Bioorg. Med. Chem. Lett. 2007, 17, 3636.
Figure 3. Reversibility of CCR2 blockade at 10 lM 31 in 1% FBS following buffer
exchange.
7. Kothandaraman, S.; Donnely, K. L.; Butora, G.; Jiao, R.; Pasternak, A.; Morriello,
G. J.; Goble, S. D.; Zhou, C.; Mills, S. G.; MacCoss, M.; Vicario, P. P.; Ayala, J. M.;
DeMartino, J. A.; Struthers, M.; Cascieri, M. A.; Lihu Yang, L. Bioorg. Med. Chem.
Lett. 2009, 19, 1830.
8. Cherney, R. J.; Brogan, J. B.; Moa, R.; Lo, Y. C.; Yang, G.; Miller, P. B.; Scherle, P.
A.; Molino, B. F.; Carter, P. H.; Decicco, C. P. Bioorg. Med. Chem. Lett. 2009, 19,
597.
9. Kettle, J. G.; Faull, A. W.; Barker, A. J.; Davies, D. H.; Stone, M. A. Bioorg. Med.
Chem. Lett. 2004, 14, 405.
10. Boyden chamber (48-well), CCL2-stimulated chemotaxis of THP-1 cells; foetal
bovine serum (FBS) or human serum (HS) added to assay buffer. %I and pKi
correlated well.
considered to be of benefit given that signaling redundancy is
mooted as one of the likely reasons for the poor clinical efficacy ob-
served to date with selective chemokine antagonists.15
The time-dependent behavior of compound 31 in chemotaxis
was investigated. THP-1 cells were incubated with 10 lM 31 for
30 min and the assay buffer exchanged. Periodic stimulation of
chemotaxis provided the reversibility curve illustrated in Figure
3. The half-life for this reversibility was measured as approxi-
mately 280 min, suggesting a slow dissociation rate of the com-
pound from the receptor.
11. Saponin added to assay buffer resulting in no significant change in pKi, see:
Ryan, A. J.; Gray, N. M.; Lowe, P. N.; Chung, C.-W. J. Med. Chem. 2003, 46(16),
3448.
HTS hit 6 (CCR2 pKi 6.1, MW 471, c log P16 5.1) was optimized
through careful attention to molecular size and physical properties
to provide compound 37 (CCR2 pKi 8.0, MW 443, c log P 3.4). The
apparent influence of plasma proteins on activity was moderated
via removal of the carboxylic acid and through reduction of lipo-
philicity. Measured sulfonamide pKas were apparently related to
the activity shift observed in chemotaxis, as exemplified by the clo-
sely related analogs 36, 37 and 42 whereby the most lipophilic, but
least acidic compound proved to be the most effect anti-chemotac-
tic agent.
12. See ‘Identification and prediction of promiscuous aggregating inhibitors among
known drugs’: Seidler, J.; McGovern, S. L.; Doman, T. N.; Shoichet, B. K. J. Med.
Chem. 2003, 46(21), 4477.
13. (a) Goodman, K. B.; Sehon, C. A.; Cleary, P. A.; Philp, J.; Peace, S. PCT Int. Appl.
WO2006-US61543, 2007. (b) Brooks, C.; Peace, S.; Smethurst, C.; Watson, S. P.
PCT Int. Appl. WO2006-US28321, 2007. Representative experimental data
provided in Supplementary information.
14. Chromatographic data from an immobilised human serum albumin column
suggested high (>98%) protein binding for all examples. Detailed investigations
using ultrafiltration and Biacore methodology confirmed very high protein
binding (>99.5%) but failed to usefully differentiate compounds.
15. Horuk, R. Nat. Rev. Drug Disc. 2009, 8, 23.
16. Calculated using ACD c log P, version 11.