Rf 0.19 (MeCN–H2O, 94 : 6, v/v); 1H NMR (MeOH-d4): d 7.62
(2H, d, J 9.0, 2ArH), 7.33 (2H, d, J 9.0, 2ArH), 6.84 (1H, s, H6),
3.99 (4H, t, J 6.5, 2 × CH2), 3.74 (1H, s, H3), 3.66 (4H, 2 × t,
J 6.5, 2 × CH2), 3.15 (2H, t, J 7.5, CH2), 2.89 (2H, t, J 7.5, CH2);
13C NMR (MeOH-d4): d 157.4 (NHCONH), 146.4 (ArC), 146.3
(ArC), 145.8 (ArC), 129.1 (ArC), 125.1 (ArC), 122.6 (ArCH),
122.1 (ArC), 117.8 (ArC), 116.1 (ArCH), 59.6 (2 × CH2), 41.5
(2 × CH2), 39.2 (ArCH2), 30.4 (CH2NH); IR (thin film) m cm−1
2531, 2361, 1645, 1558, 1515, 1456, 1319, 1221; m/z (FAB) 467
(54%, M + K), 427 (100), 233 (35), 209 (33); Found 427.1302.
C19H25N4O3Cl2 requires 427.1304; Found C, 42.76; H, 5.33; N,
9.92. C19H25N4O3Cl2·3HCl requires C, 42.52; H, 5.08; N, 10.44%;
HPLC: tR 21.1 min (method 1), 23.6 min (method 2).
References
1 (a) A. M. Jordan, T. H. Khan, H. M. I. Osborn, A. Photiou and P. A.
Riley, Bioorg. Med. Chem., 1999, 7, 1775–1780; (b) A. M. Jordan,
T. H. Khan, H. Malkin, H. M. I. Osborn, A. Photiou and P. A.
Riley, Bioorg. Med. Chem., 2001, 9, 1549–1558; (c) A. M. Jordan,
T. H. Khan, H. Malkin and H. M. I. Osborn, Bioorg. Med. Chem.,
2002, 10, 2625–2633.
2 For recent reviews see: (a) M. Rooseboom, J. N. M. Commandeur
and N. P. E. Vermeulen, Pharmacol. Rev., 2004, 56, 53–102; (b) L. F.
Tietze and T. Feverstein, Curr. Pharm. Des., 2003, 9, 2155–2175;
(c) D. A. Goodwin and C. F. Meares, Biotechnol. Adv., 2001, 19,
435–450; (d) K. N. Syrigos and A. A. Epenetos, Anticancer Res.,
1999, 19, 605–613.
3 (a) J. Pawelek, A. Korner, A. Bergstrom and J. Bologna, Nature, 1980,
286, 617–619; (b) E. J. Land, C. A. Ramsden and P. A. Riley, Methods
Enzymol., 2004, 378, 88–109; (c) P. A. Riley, Pigm. Cell Res., 2003,
16, 548–552.
1-[2-(2-Aminoethyl)-4,5-dihydroxyphenyl]-3-{4-[bis-(2-
chloroethyl) amino]-phenyl}thiourea (6)
4 (a) V. C. Pearson, J. Ferguson, P. M. Rogers, L. R. Kelland and D. J.
Robins, Oncol. Res., 2003, 13, 503–512; (b) N. J. Lant, P. McKeown,
M. C. Timoney, L. R. Kelland, P. M. Rogers and D. J. Robins, Anti-
Cancer Drug Des., 2001, 16, 49–55; (c) N. J. Lant, P. McKeown,
L. R. Kelland, P. M. Rogers and D. J. Robins, Anti-Cancer Drug
Des., 2000, 15, 295–302; (d) A. Gali, P. D. Thomas, M. Ota and
K. Jimbow, Melanoma Res., 2000, 10, 9–15; (e) M. Simoneva, A.
Wall, R. Weissleder and A. Bogdanov, Jr., Cancer Res., 2000, 60,
6656–6662; (f) G. Prota, M. d’Ischia and D. Mascagna, Melanoma
Res., 1994, 4, 351–358; (g) K. Jimbow, T. Iwashina, F. Alena, K.
Yamada, J. Pankovich and T. Umemura, J. Invest. Dermatol., 1993,
100, 231S–238S; (h) P. A. Riley, C. J. Cooksey, C. I. Johnson, E. J.
Land, A. M. Latter and C. A. Ramsden, Eur. J. Cancer, 1997, 33, 135–
143; (i) M. M. Wick, J. Invest. Dermatol., 1980, 74, 63–65; (j) M. E.
Morrison, M. J. Yagi and G. Cohen, Proc. Natl. Acad. Sci. USA,
1985, 82, 2960–2964; (k) S. Ito, T. Kato, K. Ishikawa, T. Kasuya and
K. Jimbow, Biochem. Pharmacol., 1987, 36, 2007–2011.
5 For a recent example see: E. M. Noorda, B. C. Vrouenraets, O. E.
Nieweg, J. M. Klasse, J. van der Zee and B. B. R. Kroon, Melanoma
Res., 2003, 13, 395–399.
Thiourea (30) (200 mg, 0.36 mmol) was solubilised in acetone
(4 mL) and heated to reflux with 6 M HCl (2 mL) for 4 h. After
removal of the solvent by lyophilisation, the pure product (6)
was purified by column chromatography (MeCN–H2O, 94 : 6,
v/v) to yield the pure product as a yellow solid (55 mg, 67%). Mp
226 ◦C; Rf 0.19 (MeCN–H2O, 94 : 6, v/v); 1H NMR (MeOH-d4):
d 7.25 (2H, d, J 9.0, 2ArH), 6.79–6.77 (3H, m, H6 + 2ArH),
6.71 (1H, s, H3), 3.81–3.68 (8H, m, 4 × CH2), 3.18 (2H, t, J 7.5,
CH2), 2.86 (2H, t, J 7.5, CH2); 13C NMR (MeOH-d4): d 183.7
=
(C S), 147.0 (ArC), 146.4 (ArC), 141.8 (ArC), 129.1 (ArC),
127.3 (ArC), 118.1 (2 × ArCH), 117.9 (ArC), 117.6 (ArC), 113.9
(2 × ArCH), 54.9 (2 × CH2), 42.1 (2 × CH2), 41.6 (ArCH2),
30.6 (CH2NH); IR (thin film) m cm−1 2531, 2361, 1645, 1558,
1515, 1456, 1319, 1221; m/z (FAB) 523 (30%, M + 2H + 2K),
443 (75), 409 (20); Found 443.1070. C19H24N3O2SCl2 requires
443.0997; HPLC: tR 20.7 min (method 1), 22.9 min (method 2).
6 For recent examples see: (a) I. Niculescu-Duvaz, I. Scanlon, D.
Niculescu-Duvaz, F. Friedlos, J. Martin, R. Marais and C. J. Springer,
J. Med. Chem., 2004, 47, 2651–2658; (b) C. J. Springer and I.
Niculescu-Duvaz, Anti-Cancer Drug Des., 1995, 10, 361–372.
7 E. Frei, B. A. Teicher, S. A. Holden, K. N. Cathcart and Y. Young,
Cancer Res., 1988, 48, 6417–6423.
8 H. M. I. Osborn and N. A. O. Williams, Org. Lett., 2004, 6, 3111–
3113.
9 A. Napolitano, M. d’Ischia, C. Constantini and G. Prota, Tetrahe-
dron, 1992, 48, 8515–8522.
Oximetry studies. To a vigorously stirred solution of mush-
room tyrosinase (2.2 mL, 300 units, Sigma mushroom tyrosinase,
2060 units mg−1) in phosphate buffer, pH 7.2, were added 100 lL
of a 10 mM solution of the compound under investigation.
Oxygen uptake was monitored using a YSI 5300 biological
oxygen monitor. Experiments were carried out at 37 ◦C in
triplicate.
Drug release studies. Tyrosinase (300 lL of a 2500 units
mL−1 solution in phosphate buffer) was diluted with phosphate
buffer, pH 7.2 (700 lL) and incubated at 37 ◦C with the prodrug
(100 lL of a 10 mM solution in DMSO–phosphate buffer
(2 : 100, v/v; 700 lL)). At various intervals, the solution was
analysed by HPLC.
10 (a) M. H. Benn, A. M. Creighton, L. N. Owen and G. R. White,
J. Chem. Soc., 1961, 2365–2375; (b) R. Everett, J. Chem. Soc., 1949,
1972–1980; (c) Y. H. Cho and J. C. Park, Tetrahedron Lett., 1997, 38,
8331–8334.
11 O. Yuji and T. Tatsuyoshi, Tetrahedron Lett., 1984, 25, 5397–5400.
12 A. C. Cheng and N. Castagnoli, Jr., J. Med. Chem., 1984, 27, 513–520.
13 For example see: (a) S. Y. Seo, V. K. Sharma and N. Sharma,
J. Agric. Food Chem., 2003, 51, 2837–2853; (b) G. H. Mu¨ller, A. Lang,
D. R. Seithel and H. Waldmann, Chem.–Eur. J., 1998, 4, 2513–2522;
(c) A. J. M. Schoot-Uiterkamp and H. S. Mason, Proc. Natl. Acad.
Sci. USA, 1973, 70, 993–996; (d) K. Nishioka, Eur. J. Biochem., 1978,
85, 137–146.
14 J. A. Prezioso, M. W. Epperly, N. Wang and W. B. Bloomer, Cancer
Lett., 1992, 63, 73–79.
15 Tyrosinase activity in the cell lines was determined according to the
method of Pifferi et al.: P. G. Pifferi and L. Baldassari, Anal. Biochem.,
1973, 52, 325.
16 Cytotoxicity assays were performed in triplicate using the Sulforho-
damine B assay and are reported as the mean of the three values
according to: P. Skehan, R. Storeng, D. Scudiero, A. Monks, J.
McMahon, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd,
J. Natl. Cancer Inst., 1990, 82, 1107.
17 C. R. Rasmussen, J. F. Gardocki, J. N. Plampin, B. L. Twardzik, B. E.
Reynolds, A. J. Molinari, N. Schwartz, W. W. Bennets, B. E. Price
and J. Marakouski, J. Med. Chem., 1978, 21, 1044–1054.
18 J. K. Wilson, R. C. Illing, N. Subusinghe, J. B. Hoffmann, M. J.
Rudolph, R. Soll, C. J. Molley, R. Bone, D. Green, T. Randall and
M. Zhang, Bioorg. Med. Chem. Lett., 2001, 11, 915–918.
Chemical stability studies. The prodrug (100 lL of a 10 mM
solution in DMSO–phosphate buffer (2 : 100, v/v; 700 lL))
was incubated in phosphate buffer (900 lL, pH 7.2) at
37 ◦C. Aliquots (100 lL) were removed at various time intervals
and diluted with MeCN (500 lL) and analysed by HPLC.
Serum stability studies. The prodrug (100 lL of a 10 mM
solution in DMSO–phosphate buffer (2 : 100, v/v; 700 lL))
was incubated in phosphate buffer–adult bovine serum–RPMI
growth media (900 lL, 1 : 1 : 1, v/v/v) at 37 ◦C. Aliquots (100 lL)
were removed at various time intervals and diluted with MeCN
(500 lL) and analysed by HPLC.
Acknowledgements
We gratefully acknowledge the AICR, the University of Read-
ing’s Research Endowment Trust Fund and the School of
Chemistry, University of Reading, for financial support of this
work.
4 0 1 0
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 4 0 0 2 – 4 0 1 0